bbox_util.h 10.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#pragma once
16
#include <algorithm>
17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22 23
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace operators {

24 25
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

26
struct RangeInitFunctor {
27 28 29 30
  int start;
  int delta;
  int* out;
  HOSTDEVICE void operator()(size_t i) { out[i] = start + i * delta; }
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
};

template <typename T>
inline HOSTDEVICE T RoIArea(const T* box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

51 52 53 54 55 56
/*
 * transform that computes target bounding-box regression deltas
 * given proposal boxes and ground-truth boxes.
 */
template <typename T>
inline void BoxToDelta(const int box_num, const framework::Tensor& ex_boxes,
57
                       const framework::Tensor& gt_boxes, const float* weights,
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                       const bool normalized, framework::Tensor* box_delta) {
  auto ex_boxes_et = framework::EigenTensor<T, 2>::From(ex_boxes);
  auto gt_boxes_et = framework::EigenTensor<T, 2>::From(gt_boxes);
  auto trg = framework::EigenTensor<T, 2>::From(*box_delta);
  T ex_w, ex_h, ex_ctr_x, ex_ctr_y, gt_w, gt_h, gt_ctr_x, gt_ctr_y;
  for (int64_t i = 0; i < box_num; ++i) {
    ex_w = ex_boxes_et(i, 2) - ex_boxes_et(i, 0) + (normalized == false);
    ex_h = ex_boxes_et(i, 3) - ex_boxes_et(i, 1) + (normalized == false);
    ex_ctr_x = ex_boxes_et(i, 0) + 0.5 * ex_w;
    ex_ctr_y = ex_boxes_et(i, 1) + 0.5 * ex_h;

    gt_w = gt_boxes_et(i, 2) - gt_boxes_et(i, 0) + (normalized == false);
    gt_h = gt_boxes_et(i, 3) - gt_boxes_et(i, 1) + (normalized == false);
    gt_ctr_x = gt_boxes_et(i, 0) + 0.5 * gt_w;
    gt_ctr_y = gt_boxes_et(i, 1) + 0.5 * gt_h;

    trg(i, 0) = (gt_ctr_x - ex_ctr_x) / ex_w;
    trg(i, 1) = (gt_ctr_y - ex_ctr_y) / ex_h;
    trg(i, 2) = std::log(gt_w / ex_w);
    trg(i, 3) = std::log(gt_h / ex_h);

    if (weights) {
      trg(i, 0) = trg(i, 0) / weights[0];
      trg(i, 1) = trg(i, 1) / weights[1];
      trg(i, 2) = trg(i, 2) / weights[2];
      trg(i, 3) = trg(i, 3) / weights[3];
    }
  }
}

template <typename T>
void Gather(const T* in, const int in_stride, const int* index, const int num,
            T* out) {
  const int stride_bytes = in_stride * sizeof(T);
  for (int i = 0; i < num; ++i) {
    int id = index[i];
    memcpy(out + i * in_stride, in + id * in_stride, stride_bytes);
  }
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename T>
void BboxOverlaps(const framework::Tensor& r_boxes,
                  const framework::Tensor& c_boxes,
                  framework::Tensor* overlaps) {
  auto r_boxes_et = framework::EigenTensor<T, 2>::From(r_boxes);
  auto c_boxes_et = framework::EigenTensor<T, 2>::From(c_boxes);
  auto overlaps_et = framework::EigenTensor<T, 2>::From(*overlaps);
  int r_num = r_boxes.dims()[0];
  int c_num = c_boxes.dims()[0];
  auto zero = static_cast<T>(0.0);
  T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h,
      inter_area;
  for (int i = 0; i < r_num; ++i) {
    r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) *
                 (r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1);
    for (int j = 0; j < c_num; ++j) {
      c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) *
                   (c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1);
      x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0));
      y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1));
      x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2));
      y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3));
      inter_w = std::max(x_max - x_min + 1, zero);
      inter_h = std::max(y_max - y_min + 1, zero);
      inter_area = inter_w * inter_h;
123 124 125
      overlaps_et(i, j) =
          (inter_area == 0.) ? 0 : inter_area /
                                       (r_box_area + c_box_area - inter_area);
126 127 128 129
    }
  }
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Calculate max IoU between each box and ground-truth and
// each row represents one box
template <typename T>
void MaxIoU(const framework::Tensor& iou, framework::Tensor* max_iou) {
  const T* iou_data = iou.data<T>();
  int row = iou.dims()[0];
  int col = iou.dims()[1];
  T* max_iou_data = max_iou->data<T>();
  for (int i = 0; i < row; ++i) {
    const T* v = iou_data + i * col;
    T max_v = *std::max_element(v, v + col);
    max_iou_data[i] = max_v;
  }
}

static void AppendProposals(framework::Tensor* dst, int64_t offset,
                            const framework::Tensor& src) {
  auto* out_data = dst->data<void>();
  auto* to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}

J
jerrywgz 已提交
156 157 158 159
template <class T>
void ClipTiledBoxes(const platform::DeviceContext& ctx,
                    const framework::Tensor& im_info,
                    const framework::Tensor& input_boxes,
160
                    framework::Tensor* out, bool is_scale = true) {
J
jerrywgz 已提交
161 162 163 164
  T* out_data = out->mutable_data<T>(ctx.GetPlace());
  const T* im_info_data = im_info.data<T>();
  const T* input_boxes_data = input_boxes.data<T>();
  T zero(0);
165 166 167 168
  T im_w =
      is_scale ? round(im_info_data[1] / im_info_data[2]) : im_info_data[1];
  T im_h =
      is_scale ? round(im_info_data[0] / im_info_data[2]) : im_info_data[0];
J
jerrywgz 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
  for (int64_t i = 0; i < input_boxes.numel(); ++i) {
    if (i % 4 == 0) {
      out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
    } else if (i % 4 == 1) {
      out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
    } else if (i % 4 == 2) {
      out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
    } else {
      out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
    }
  }
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
// Filter the box with small area
template <class T>
void FilterBoxes(const platform::DeviceContext& ctx,
                 const framework::Tensor* boxes, float min_size,
                 const framework::Tensor& im_info, bool is_scale,
                 framework::Tensor* keep) {
  const T* im_info_data = im_info.data<T>();
  const T* boxes_data = boxes->data<T>();
  keep->Resize({boxes->dims()[0]});
  min_size = std::max(min_size, 1.0f);
  int* keep_data = keep->mutable_data<int>(ctx.GetPlace());

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;

    if (is_scale) {
      ws = (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_info_data[2] + 1;
      hs =
          (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_info_data[2] + 1;
    }

    if (ws >= min_size && hs >= min_size && x_ctr <= im_info_data[1] &&
        y_ctr <= im_info_data[0]) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
static void BoxCoder(const platform::DeviceContext& ctx,
                     framework::Tensor* all_anchors,
                     framework::Tensor* bbox_deltas,
                     framework::Tensor* variances,
                     framework::Tensor* proposals) {
  T* proposals_data = proposals->mutable_data<T>(ctx.GetPlace());

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto* bbox_deltas_data = bbox_deltas->data<T>();
  auto* anchor_data = all_anchors->data<T>();
  const T* variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;

    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    if (variances) {
      bbox_center_x =
          variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
          anchor_center_x;
      bbox_center_y = variances_data[i * len + 1] *
                          bbox_deltas_data[i * len + 1] * anchor_height +
                      anchor_center_y;
      bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                            bbox_deltas_data[i * len + 2],
                                        kBBoxClipDefault)) *
                   anchor_width;
      bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                             bbox_deltas_data[i * len + 3],
                                         kBBoxClipDefault)) *
                    anchor_height;
    } else {
      bbox_center_x =
          bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
      bbox_center_y =
          bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
      bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
                                        kBBoxClipDefault)) *
                   anchor_width;
      bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
                                         kBBoxClipDefault)) *
                    anchor_height;
    }

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
275
  }
276
  // return proposals;
277 278
}

279 280
}  // namespace operators
}  // namespace paddle