optimizer.py 19.8 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

3 4
import framework
from backward import append_backward_ops
5
from framework import unique_name, program_guard
6 7 8
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
9

10
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
11 12 13 14 15 16


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
17 18
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
19 20
    """

D
dzhwinter 已提交
21
    def __init__(self, global_step=None, regularization=None):
22
        self._global_step = global_step
D
dzhwinter 已提交
23
        self.regularization = regularization
24 25 26 27 28
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
29
        self.helper = None
Q
Qiao Longfei 已提交
30 31 32 33 34 35

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

36 37 38 39 40 41 42 43 44 45 46 47 48
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        param_lr_shape = [1]
        param_lr_var = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=param_lr_shape,
            lod_level=1,
            persistable=True)
        param_lr = param_lr * self._learning_rate
        self.helper.set_variable_initializer(
49
            var=param_lr_var, initializer=Constant(param_lr))
50
        return param_lr_var
51 52 53 54 55 56 57

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
58
        """
59 60
        pass

61 62 63 64 65 66 67 68 69 70 71 72 73
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
74
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
75 76 77 78 79 80 81 82 83 84 85
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
86
            raise Exception("Accumulator {} already exists for parameter {}".
87
                            format(name, param.name))
Q
Qiao Longfei 已提交
88 89 90 91 92

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
F
fengjiayi 已提交
93
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
94 95 96
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
97
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
98
        self._accumulators[name][param.name] = var
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
136 137 138
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
139
                                 startup_program=None):
Q
Qiao Longfei 已提交
140 141 142 143 144 145 146
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
147 148 149 150
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
151
          :param startup_program: 
Q
Qiao Longfei 已提交
152
        """
153 154 155 156 157
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
158
        # for parameters and extend _finish_update method to add custom ops.
159 160

        # Create any accumulators
Q
Qiao Longfei 已提交
161
        program = loss.block.program
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        with program_guard(program, startup_program):
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Returned list of ops can include more ops in addition
            # to optimization ops
            return_ops = optimize_ops

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
            finish_ops = self._finish_update(loss.block)
            if finish_ops is not None:
                return_ops += finish_ops

            if self._global_step is not None:
                return_ops.append(self._increment_global_step(loss.block))
            return return_ops
Q
Qiao Longfei 已提交
188

Q
Qiao Longfei 已提交
189 190
    def minimize(self,
                 loss,
191
                 startup_program=None,
Q
Qiao Longfei 已提交
192 193
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
194 195
        """Add operations to minimize `loss` by updating `parameter_list`.

196
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
197 198
        `create_optimization_pass()` into one.
        """
199
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set)
F
fengjiayi 已提交
200
        # Add regularization if any
D
dzhwinter 已提交
201 202
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Q
Qiao Longfei 已提交
203
        optimize_ops = self.create_optimization_pass(params_grads, loss,
204
                                                     startup_program)
Q
Qiao Longfei 已提交
205 206 207 208 209 210 211
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
212
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
213
        assert learning_rate is not None
D
dzhwinter 已提交
214
        super(SGDOptimizer, self).__init__(**kwargs)
Q
Qiao Longfei 已提交
215 216 217
        self.type = "sgd"
        self._learning_rate = learning_rate

218 219
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
220

Q
Qiao Longfei 已提交
221 222 223 224 225 226
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
227
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
228
            },
229
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
230 231

        return sgd_op
232 233 234 235 236 237 238


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
239
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
240 241
        assert learning_rate is not None
        assert momentum is not None
D
dzhwinter 已提交
242
        super(MomentumOptimizer, self).__init__(**kwargs)
243 244 245
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
246
        self._use_nesterov = bool(use_nesterov)
247 248 249 250 251

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
252
            self._add_accumulator(self._velocity_acc_str, p)
253 254 255 256 257 258 259 260 261 262 263 264 265

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
266
                "LearningRate": self._create_param_lr(param_and_grad)
267 268 269 270 271
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
272
            attrs={"mu": self._momentum,
273
                   "use_nesterov": self._use_nesterov})
274 275

        return momentum_op
276 277 278 279 280 281 282


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
283
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
284 285
        assert learning_rate is not None
        assert epsilon is not None
D
dzhwinter 已提交
286
        super(AdagradOptimizer, self).__init__(**kwargs)
287 288 289 290 291 292 293 294
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
295
            self._add_accumulator(self._moment_acc_str, p)
296 297 298 299 300 301 302

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

303
        # Create the adagrad optimizer op
304 305 306 307 308 309
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
310
                "LearningRate": self._create_param_lr(param_and_grad)
311 312 313 314 315 316
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
317 318 319 320 321 322 323 324 325 326 327 328


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
329
                 epsilon=1e-8,
D
dzhwinter 已提交
330
                 **kwargs):
331 332 333 334
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
335
        super(AdamOptimizer, self).__init__(**kwargs)
336 337 338 339 340 341 342 343 344
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
345
        main_block = block.program.global_block()
346 347
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
348 349 350 351 352 353 354
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
355
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
356 357 358 359 360 361 362 363 364

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
365
            self._beta2_pow_acc, initializer=Constant(self._beta2))
366 367 368

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
369 370
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
371 372 373 374 375 376 377 378

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
379
        # create the adam optimize op
380 381 382 383 384
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
385
                "LearningRate": self._create_param_lr(param_and_grad),
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
408 409
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
410 411 412 413 414
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
415
        scale_beta2 = main_block.append_op(
416 417 418 419 420 421
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
422 423 424 425 426 427 428 429 430 431 432 433


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
434
                 epsilon=1e-8,
D
dzhwinter 已提交
435
                 **kwargs):
436 437 438 439
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
440
        super(AdamaxOptimizer, self).__init__(**kwargs)
441 442 443 444 445 446 447 448 449
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
450 451 452 453 454 455 456
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
457
            self._beta1_pow_acc, initializer=Constant(self._beta1))
458 459 460

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
461 462
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
463 464 465 466 467 468 469 470 471 472 473 474 475

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
476
                "LearningRate": self._create_param_lr(param_and_grad),
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
498 499
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
500 501 502 503 504 505
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
506 507 508 509 510 511 512


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
513
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
514 515 516 517
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

D
dzhwinter 已提交
518
        super(DecayedAdagradOptimizer, self).__init__(**kwargs)
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        self.type = "decayed_adagrad"
        self._learning_rate = learning_rate
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer