eager_method.cc 77.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32 33 34 35 36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
38
#include "paddle/fluid/pybind/slice_utils.h"
39
#include "paddle/fluid/pybind/uva_utils.h"
40 41 42 43
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
44 45
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
46
#include "pybind11/detail/internals.h"
47 48
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
49
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
50
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
W
wanghuancoder 已提交
51
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
52
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
54
#include "paddle/phi/core/ddim.h"
55
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
56

57 58 59
namespace paddle {
namespace pybind {

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
namespace py = ::pybind11;

class PyTensorHook : public egr::TensorHook {
 public:
  explicit PyTensorHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  paddle::experimental::Tensor operator()(
      const paddle::experimental::Tensor& var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorHook for var " << var.name();

    PyObject* res = nullptr;
    try {
J
Jiabin Yang 已提交
80 81 82
      PyObject* p_tmp_var = ToPyObject(var);
      res = PyObject_CallFunctionObjArgs(py_func_, p_tmp_var, nullptr);
      Py_DECREF(p_tmp_var);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }
J
Jiabin Yang 已提交
99 100 101
    auto res_tensor = reinterpret_cast<TensorObject*>(res)->tensor;
    Py_DECREF(res);
    return res_tensor;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  }

 private:
  PyObject* py_func_;
};

class PyTensorVoidHook : public egr::TensorVoidHook {
 public:
  explicit PyTensorVoidHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorVoidHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  void operator()() override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorVoidHook";

    try {
      PyObject_CallFunctionObjArgs(py_func_, nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }
  }

 private:
  PyObject* py_func_;
};

140 141
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
142
                                     const paddle::platform::Place& place,
143
                                     bool zero_copy);
144

145
extern PyTypeObject* p_tensor_type;
146

J
Jiabin Yang 已提交
147 148 149 150 151
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
152 153
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

171 172
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
173 174
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
175 176 177 178 179 180 181 182 183
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
184 185 186 187 188
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
189 190 191 192 193
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
194 195
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
196
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
197 198 199 200 201 202 203 204
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
205

206
  PyObject* array = api.PyArray_NewFromDescr_(
207 208 209 210 211 212
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
213 214 215 216
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
217
  if (!self->tensor.impl()->initialized()) {
218 219 220 221
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
222 223 224 225 226 227
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
228 229 230 231 232
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
233 234 235
    return array;
  }

236
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
237
    platform::CPUPlace place;
238 239 240 241 242 243 244 245 246 247 248
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
249 250 251
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
252 253 254 255 256 257 258 259
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
260 261 262
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
263 264
    }

265
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
266
  } else if (self->tensor.is_gpu()) {
267 268 269 270 271
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
272 273 274 275 276 277 278
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      paddle::platform::GpuMemcpySync(
279 280
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
281 282
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
283
          kind);
284 285 286 287 288
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
289 290
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
291 292
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
293
          kind);
294
    }
295
#endif
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    }
#endif
322 323 324
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
325
    RETURN_PY_NONE
326 327 328 329 330 331
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
347 348 349 350 351
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
    // Get the max unicode length of StringTensor to create numpy unicode string
    // array.
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
390 391 392
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
393 394 395 396
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
397
    RETURN_PY_NONE
J
Jack Zhou 已提交
398 399 400 401
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

402 403 404 405
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
406
  return ToPyObject(self->tensor.initialized());
407 408 409
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

442 443
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
444 445
                                        PyObject* kwargs) {
  EAGER_TRY
446 447
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
448
  auto cp_tensor = self->tensor.copy_to(place, blocking);
449 450 451
  if (!blocking) {
    IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
  }
452 453 454
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
455
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
456 457 458 459
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

460 461
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
462 463
                                   PyObject* kwargs) {
  EAGER_TRY
464
  auto cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
465 466 467 468 469 470 471 472
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

473 474 475 476
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
477 478 479
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
480 481
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
482
  self->tensor = src_tensor;
483 484

  // Recover source name
485
  self->tensor.set_name(orig_name);
486 487

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
488
          << " to " << self->tensor.name();
489 490
  RETURN_PY_NONE

491 492 493
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

494 495
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
496 497
                                     PyObject* kwargs) {
  EAGER_TRY
498 499
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
500
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
501
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
502
          << self->tensor.name();
503
  if (!self->tensor.initialized()) {
504
    egr::EagerUtils::autograd_meta(&(self->tensor))
505 506
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
507
    egr::EagerUtils::autograd_meta(&(self->tensor))
508 509
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
510
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
511
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
512 513 514
    }
  } else {
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
515
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
516
    }
517 518
  }

519
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
520
          << self->tensor.name();
521 522
  RETURN_PY_NONE

523 524 525
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

526 527
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
528
                                     PyObject* kwargs) {
529
  EAGER_TRY
530
  if (egr::Controller::Instance().HasGrad()) {
531
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
532
    if (!meta->GetMutableGradNode()) {
533
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
534
              << "become accumulation node";
535
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
536
    }
537
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
538
  }
539 540
  RETURN_PY_NONE

541 542 543
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

544 545
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
546
                                       PyObject* kwargs) {
547
  EAGER_TRY
548
  VLOG(4) << "ClearGradient " << self->tensor.name();
549

550 551 552
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
553
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
554 555
  }

556
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
557 558
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
559 560 561 562 563 564
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
565
  } else {
566
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
567
    grad = meta->MutableGrad();
568 569
  }

570 571 572 573 574 575 576 577 578 579 580
  if (grad->impl()) {
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
581 582 583 584
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
585 586 587 588 589
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
590 591 592 593 594 595 596
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
597 598
      }
    }
599
  }
600

601 602
  RETURN_PY_NONE

603 604 605
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

606 607
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
608
                                    PyObject* kwargs) {
609
  EAGER_TRY
610
  VLOG(4) << "ZeroGrads " << self->tensor.name();
611

612
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
613
    // Add RetainGrad as PostHook to AccumulationNode
614 615 616 617 618 619 620 621
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
622 623 624 625 626 627 628
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
629
    }
630
  } else {
631
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
632
    if (meta->MutableGrad()->initialized()) {
633 634 635 636 637 638 639 640 641
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
642
    }
643 644
  }

645 646
  RETURN_PY_NONE

647 648 649
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

650 651
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
652 653
                                         PyObject* kwargs) {
  EAGER_TRY
654 655
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
656 657
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
658 659 660
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
661
                        self->tensor.name()));
662
  auto* src_tensor =
663
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
664 665 666
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
667 668
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
669
  dst_tensor->ShareBufferWith(*src_tensor);
670
  dst_tensor->ShareDataTypeWith(*src_tensor);
671 672
  RETURN_PY_NONE

673 674 675
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

676 677 678 679
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
680 681
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
682 683
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
684 685 686
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
687
                        self->tensor.name()));
688
  bool res = false;
689
  if (!self->tensor.defined() || !dst_ptr->defined()) {
690 691 692
    return ToPyObject(res);
  }
  auto* self_ptr =
693
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
694 695 696 697 698 699 700
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

701 702 703 704
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
705 706
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
707 708
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
709 710 711
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
712 713
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
714 715
  RETURN_PY_NONE

716 717 718
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

719 720 721 722
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
723 724
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
725 726
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
727 728 729 730 731
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
732
  if (!self->tensor.defined() || !src_tensor.defined()) {
733 734
    return ToPyObject(res);
  }
735
  res = (self->tensor.impl().get() == src_tensor.impl().get());
736 737 738 739
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

740 741
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
742 743
                                      PyObject* kwargs) {
  EAGER_TRY
744
  PADDLE_ENFORCE_EQ(
745 746
      self->tensor.initialized(),
      true,
747
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
748
                                        self->tensor.name()));
749

750
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
751
  if (obj) {
752 753 754 755 756 757
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
758 759 760 761 762 763 764 765 766 767
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

768 769 770 771
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
772
  if (!self->tensor.defined()) {
773 774 775
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
776
  }
777 778 779
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
780 781 782
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
783
    RETURN_PY_NONE
784 785 786 787
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

788 789 790 791 792
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
793
    RETURN_PY_NONE
794 795 796 797 798 799
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
800
    RETURN_PY_NONE
801 802 803 804
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
805 806 807
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
808
  EAGER_TRY
J
Jiabin Yang 已提交
809 810 811 812 813 814 815
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
  PADDLE_ENFORCE_EQ(
816 817
      self->tensor.initialized(),
      true,
J
Jiabin Yang 已提交
818 819 820 821 822
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
823 824 825 826 827 828 829 830 831 832 833
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
855 856 857 858 859 860
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
861
    if (op_type == "slice") {
862 863 864 865 866 867
      out = slice_final_state_dygraph_function(self->tensor,
                                               slice_axes_tmp,
                                               slice_starts,
                                               slice_ends,
                                               infer_flags_tmp,
                                               decrease_axis_tmp);
J
Jiabin Yang 已提交
868
    } else if (op_type == "strided_slice") {
869 870
      out = strided_slice_final_state_dygraph_function(
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
          }
        }
        axis -= len;
      }

      paddle::experimental::Tensor new_out;
      framework::AttributeMap attrs = {{"axes", none_axes}};
      new_out = std::get<0>(unsqueeze2_dygraph_function(out, std::move(attrs)));
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
919
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
920 921
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
922 923
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
924
    framework::AttributeMap attrs = {{"dim", 0}};
925 926
    out = index_select_final_state_dygraph_function(
        self->tensor, select_index, 0);
J
Jiabin Yang 已提交
927 928 929
  }

  return ToPyObject(out);
930 931 932
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

933 934
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
935 936 937
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
938 939 940
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
941 942
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
943 944
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
962 963
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
964 965 966 967 968 969
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
970 971
        offset,
        numel,
W
wanghuancoder 已提交
972 973 974
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
975 976
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
977 978 979 980 981 982
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
983 984
          index,
          dims[i],
W
wanghuancoder 已提交
985
          platform::errors::InvalidArgument(
986 987 988
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1020 1021 1022 1023 1024 1025
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1026 1027 1028 1029 1030
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1031 1032
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1110 1111 1112 1113 1114
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

1158
      if (!value_tensor_tmp.initialized()) {
W
wanghuancoder 已提交
1159 1160 1161
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1162 1163 1164
            value,
            platform::Place(platform::CUDAPlace(0)),
            false);
W
wanghuancoder 已提交
1165 1166 1167
#else
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1168 1169 1170
            value,
            platform::Place(platform::CPUPlace()),
            false);
W
wanghuancoder 已提交
1171 1172 1173 1174
#endif
      } else {
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1175 1176 1177
            value,
            value_tensor_tmp.place(),
            false);
W
wanghuancoder 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
      }

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
              "float32, int32 or int64, "
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1226
      // use inplace set_value_ operator
1227 1228
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1229 1230 1231 1232 1233 1234 1235 1236 1237
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1252
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1253
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1254 1255 1256 1257
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1258
#else
1259 1260 1261 1262
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1263 1264
#endif
    } else {
1265 1266
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1267 1268
    }
  }
1269 1270
  RETURN_PY_NONE

W
wanghuancoder 已提交
1271 1272 1273
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1274 1275
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1276 1277 1278 1279 1280
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1293 1294 1295 1296 1297 1298 1299 1300 1301
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1302 1303
        rank_info.first,
        rank_info.second,
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1316 1317
        rank_info.first,
        rank_info.second,
1318 1319 1320 1321 1322 1323
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1324 1325
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1338 1339
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1340 1341 1342 1343 1344 1345
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1346 1347
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1348 1349 1350 1351
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1352 1353 1354 1355
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
      std::make_shared<PyTensorVoidHook>(hook_func));

1368 1369
  RETURN_PY_NONE

1370 1371 1372
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1373 1374
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1375
                                       PyObject* kwargs) {
1376 1377 1378
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1379
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1380
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1381
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1382
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1383
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1384
  }
1385 1386
  RETURN_PY_NONE

1387 1388 1389
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1390 1391
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1392 1393 1394
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1395 1396
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1397 1398 1399
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1400 1401
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1402 1403 1404
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1405
  if (self->tensor.initialized()) {
1406 1407
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1408 1409
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1410 1411
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1412 1413 1414 1415 1416
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1417 1418
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1419 1420 1421 1422
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1423 1424
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1425 1426 1427 1428
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1429 1430
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1431 1432
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1433

1434 1435
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
                                         PyObject* kwargs) {
  EAGER_TRY
  using Vocab = std::unordered_map<std::wstring, int>;
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
  auto strings = CastPyArg2Strings(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1465 1466
      egr::IsVariableCompatTensor(self->tensor),
      true,
1467 1468 1469 1470 1471 1472 1473 1474 1475
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
  using Vocab = std::unordered_map<std::wstring, int>;
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1546 1547
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1548 1549 1550 1551 1552 1553 1554 1555 1556
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1557 1558
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1559 1560
                                         PyObject* kwargs) {
  EAGER_TRY
1561 1562 1563
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1564 1565 1566 1567 1568
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1569 1570
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1571 1572
                                             PyObject* kwargs) {
  EAGER_TRY
1573 1574 1575
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1576 1577 1578 1579
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1580 1581
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1582 1583
                                             PyObject* kwargs) {
  EAGER_TRY
1584 1585 1586
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1587 1588 1589 1590
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1591 1592
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1606 1607
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1608 1609 1610 1611 1612 1613 1614 1615
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1616 1617
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1618 1619 1620 1621 1622 1623 1624 1625
                                            PyObject* kwargs) {
  EAGER_TRY
  uint32_t element_size = framework::DataTypeSize(self->tensor.dtype());

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1626 1627 1628 1629 1630
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1631
  RETURN_PY_NONE
1632 1633 1634
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1635 1636 1637 1638
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1639 1640 1641
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1642 1643 1644 1645
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1646 1647
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1659 1660
static PyObject* tensor_methon_element_size(TensorObject* self,
                                            PyObject* args,
1661 1662 1663 1664 1665 1666
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1683 1684
  RETURN_PY_NONE

1685 1686 1687
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1688 1689
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1690 1691 1692
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1693 1694
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1711 1712 1713 1714 1715
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1716 1717 1718 1719 1720
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1721 1722
  RETURN_PY_NONE

W
wanghuancoder 已提交
1723 1724 1725 1726
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1727 1728
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1729 1730 1731 1732
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1733 1734
      t->IsInitialized(),
      true,
1735 1736 1737 1738 1739 1740 1741
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1742 1743
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1744 1745 1746 1747
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1748 1749
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1750 1751 1752 1753 1754 1755 1756
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1757 1758
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1759 1760 1761 1762
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1763 1764
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1765 1766 1767 1768 1769
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1770
    RETURN_PY_NONE
1771 1772 1773 1774 1775 1776 1777 1778
  }
  if (grad->is_dense_tensor()) {
    auto* grad_tensor =
        static_cast<paddle::framework::LoDTensor*>(grad->impl().get());
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1779
    RETURN_PY_NONE
1780 1781 1782 1783
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1784 1785
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1786 1787 1788 1789
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1790 1791
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1806
#if defined(PADDLE_WITH_CUDA)
1807 1808
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1809 1810 1811
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1812 1813
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1814 1815 1816
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1817 1818
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1819 1820 1821 1822 1823 1824 1825 1826
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
  auto* self_tensor =
      static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
  tensor_uva(self_tensor, device_id);

1827 1828
  RETURN_PY_NONE

1829 1830 1831
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1844

1845
PyMethodDef variable_methods[] = {
1846 1847 1848 1849
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1850
    {"_is_initialized",
1851
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1852 1853
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1854
    {"_is_dense_tensor_hold_allocation",
1855 1856
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1867
    {"reconstruct_from_",
1868
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1891
    {"_is_shared_buffer_with",
1892
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1893 1894
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1895
    {"_share_underline_tensor_to",
1896
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1897 1898
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1899
    {"_is_shared_underline_tensor_with",
1900
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1901 1902 1903 1904 1905 1906
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1907
    {"get_tensor",
1908
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
1909 1910
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1911 1912
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
1913 1914
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1915 1916
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
1917 1918
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1919 1920
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
1921 1922
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1923 1924
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
1925 1926
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1927 1928
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
1929 1930 1931 1932 1933 1934
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1935 1936
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1947 1948
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
1949 1950
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1951 1952 1953
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
1954 1955 1956 1957 1958 1959
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1960 1961
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
1962 1963
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1964
    /***the method of sparse tensor****/
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2001
    /***the method of sparse tensor****/
2002 2003 2004 2005
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2006 2007
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2008 2009
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2010 2011
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2022 2023
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2046
#if defined(PADDLE_WITH_CUDA)
2047 2048 2049 2050
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2051
#endif
2052 2053
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2054 2055 2056 2057
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2058 2059
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2060 2061
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2062 2063
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2064
    {"_is_string_tensor_hold_allocation",
2065 2066
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2067 2068
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2069 2070 2071
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2072 2073
}  // namespace pybind
}  // namespace paddle