parallel.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26 27 28 29

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
30
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
31

32
__all__ = []
33 34 35

ParallelStrategy = core.ParallelStrategy

36 37 38 39 40 41 42 43 44 45 46
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

47

48
def _start_kv_server(port, http_server_d, size):
49
    from paddle.distributed.fleet.utils.http_server import KVServer
50
    http_server = KVServer(int(port), size=size)
51
    http_server.start()
52
    wait_seconds = 3
L
lilong12 已提交
53
    while http_server_d.get("running", False) or not http_server.should_stop():
54 55 56 57
        time.sleep(wait_seconds)
    http_server.stop()


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def _check_backend(backend):
    if backend not in ['nccl', 'gloo', 'bkcl', 'auto']:
        raise ValueError(
            "paddle.distributed initialize error, "
            "backend argument can only be one of 'nccl', 'gloo', 'bkcl', 'auto', but got %s"
            % backend)

    if backend == 'nccl' and not core.is_compiled_with_cuda():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with cuda but you assign 'nccl' as backend."
        )

    if backend == 'bkcl' and not core.is_compiled_with_xpu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with xpu but you assign 'bkcl' as backend."
        )

    if backend in ['auto', 'nccl', 'bkcl'] and (core.is_compiled_with_cuda() or
                                                core.is_compiled_with_xpu()):
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


def init_parallel_env(backend='auto'):
86
    """
87
    Initialize parallel training environment in dynamic graph mode.
88

89
    .. note::
90
        Now initialize both `NCCL` and `GLOO` contexts for communication.
91

92 93 94 95 96
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

97 98 99 100 101
    Returns:
        None
        
    Examples:
        .. code-block:: python
102
            # required: gpu
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
118
                # 1. initialize parallel environment
119 120
                dist.init_parallel_env()

121
                # 2. create data parallel layer & optimizer
122 123 124 125 126 127 128
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

129
                # 3. run layer
130 131 132 133 134 135 136 137 138 139 140 141 142 143
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

144 145 146 147 148 149 150 151 152 153 154
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
155 156 157 158 159 160
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to 
    #                 enable cpu only gloo prarllel training)
    is_cpu_only = _check_backend(backend)
    # 1. gpu xpu check, must be gpu or xpu, 
    if not (is_cpu_only or core.is_compiled_with_cuda() or
            core.is_compiled_with_xpu()):
161
        raise NotImplementedError(
162
            "If you want to use CPU-only version, please use 'gloo' as backend")
163 164 165 166 167 168 169 170 171

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

172
    if not is_cpu_only and core.is_compiled_with_cuda():
173
        _check_var_exists("FLAGS_selected_gpus")
174
    elif not is_cpu_only and core.is_compiled_with_xpu():
175 176
        _check_var_exists('FLAGS_selected_xpus')

177 178 179 180 181
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

182
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
183
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
184
    if is_cpu_only or init_gloo:
L
lilong12 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
199 200

    # 4. init NCCL ParallelStrategy
201
    strategy = ParallelStrategy()
202 203
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
204 205 206 207
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
208
    strategy.nrings = parallel_env.nrings
209

210
    # NOTE(chenweihang): [ why config global place here? ]
211
    # the dygraph mode will be set to default mode,
212 213 214 215
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
216 217 218
    if is_cpu_only:
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
219 220 221
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
222

223
    _set_expected_place(place)
224
    # init nccl or bkcl context
225 226 227 228
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
    elif core.is_compiled_with_cuda():
229 230 231 232 233
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
234 235 236

    other_endpoints = strategy.trainer_endpoints[:]
    other_endpoints.remove(strategy.current_endpoint)
237
    if not is_cpu_only and strategy.local_rank == 0:
238 239
        wait_server_ready(other_endpoints)

240
    parallel_helper._init_parallel_ctx()
241 242 243 244
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
245 246 247 248 249
    if is_cpu_only and parallel_env.rank == 0:
        # compare to init_gloo, we don't need to 
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
250

251 252
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
289
    return _get_global_parallel_env().rank
290 291 292 293


def get_world_size():
    """
294
    Returns the number of trainers (number of processes participating in current job).
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
312
    return _get_global_parallel_env().world_size