subgraph.h 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
18
#include <unordered_map>
19 20
#include <unordered_set>
#include <vector>
21
#include "paddle/fluid/framework/ir/fusion_group/operation.h"
22
#include "paddle/fluid/framework/ir/node.h"
23
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
24 25 26 27 28 29 30 31 32

namespace paddle {
namespace framework {
namespace ir {
namespace fusion_group {

struct SubGraph {
  int type{-1};
  std::string func_name;
33 34 35 36 37
  bool save_intermediate_out{false};

  SubGraph() = default;
  SubGraph(int t, std::string f, bool s, const std::unordered_set<Node*>& n)
      : type(t), func_name(f), save_intermediate_out(s), nodes_set(n) {}
38 39 40

  bool IsEmpty() { return nodes_set.empty(); }

41 42 43 44 45 46 47 48 49
  const std::unordered_set<Node*>& Nodes() const { return nodes_set; }

  const std::vector<Node*>& SortedNodes() {
    if (!is_sorted) {
      Sort();
    }
    return sorted_nodes;
  }

50 51
  size_t GetNumNodes() { return nodes_set.size(); }

52 53 54 55 56 57 58 59 60 61
  bool Has(Node* n) { return nodes_set.find(n) != nodes_set.end(); }

  void Insert(Node* n) {
    if (nodes_set.find(n) == nodes_set.end()) {
      VLOG(5) << "Insert " << n->Name() << " to subgraph " << this;
      nodes_set.insert(n);
      is_sorted = false;
    }
  }

62 63 64 65 66 67 68 69 70 71
  int GetNumOperations() {
    int num_operations = 0;
    for (auto* n : nodes_set) {
      if (n && n->IsOp() && n->Op()) {
        num_operations++;
      }
    }
    return num_operations;
  }

72 73
  std::vector<Node*> GetInputVarNodes() {
    // The order of input nodes should be consistent anywhere.
74
    std::vector<Node*> input_vars;
75
    for (auto* n : SortedNodes()) {
76 77 78 79 80 81 82 83 84
      if (n && n->IsVar() && n->Var()) {
        bool is_found = true;
        // When the inputs size is 0, it is also considered the input var of
        // subgraph.
        if (n->inputs.size() == 0U) {
          is_found = false;
        }
        // Normally a var node has only one input op node.
        for (auto* in : n->inputs) {
85
          if (!Has(in)) {
86 87 88 89 90 91 92 93 94 95 96
            is_found = false;
          }
        }
        if (!is_found) {
          input_vars.push_back(n);
        }
      }
    }
    return input_vars;
  }

97 98
  std::vector<Node*> GetOutputVarNodes() {
    // The order of output nodes should be consistant anywhere..
99
    std::vector<Node*> output_vars;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    for (auto* n : SortedNodes()) {
      if (n && n->IsVar() && n->Var()) {
        if (save_intermediate_out) {
          // If the var_node is the output of some op_node in the subgraph, it
          // is considered the output var node of the subgraph.
          bool is_found = false;
          for (auto* in : n->inputs) {
            if (Has(in)) {
              is_found = true;
            }
          }
          if (is_found) {
            output_vars.push_back(n);
          }
        } else {
          // If one of the var_node's outputs is the input of some operator
          // outside the subgraph, it is considered the output var node of the
          // subgraph.
          bool is_found = true;
          if (n->outputs.size() == 0U) {
            is_found = false;
          }
          for (auto* out : n->outputs) {
            if (!Has(out)) {
              is_found = false;
            }
          }
          if (!is_found) {
            output_vars.push_back(n);
          }
        }
      }
    }
    return output_vars;
  }

 private:
  int FindIndexInSortedNodes(Node* n) {
    for (size_t i = 0; i < sorted_nodes.size(); ++i) {
      if (n == sorted_nodes[i]) {
        return static_cast<int>(i);
      }
    }
    return -1;
  }

  void SortVarsBasedOnSortedOps() {
    // Insert var nodes to sorted_nodes.
    std::unordered_map<std::string, Node*> sorted_vars;
149 150
    for (auto* n : nodes_set) {
      if (n && n->IsVar() && n->Var()) {
151 152 153 154 155 156 157 158 159 160 161
        int from = 0;
        int to = sorted_nodes.size();

        for (auto* in : n->inputs) {
          if (in && in->IsOp() && in->Op()) {
            int index = FindIndexInSortedNodes(in);
            // Insert after input op node
            if (index >= 0) {
              from = index + 1 > from ? index + 1 : from;
            }
          }
162
        }
163

164
        for (auto* out : n->outputs) {
165 166 167 168 169 170
          if (out && out->IsOp() && out->Op()) {
            int index = FindIndexInSortedNodes(out);
            // Insert before output op node
            if (index >= 0) {
              to = index < to ? index : to;
            }
171 172
          }
        }
173

174 175 176 177 178
        if (from > to) {
          LOG(INFO) << "subgraph: {\n" << DebugString(Nodes()) << "}\n";
          LOG(INFO) << "sorted nodes: {\n"
                    << DebugString(sorted_nodes) << "}\n";
        }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        PADDLE_ENFORCE_LE(from, to, "Range [%d, %d] is invalid.", from, to);
        sorted_nodes.insert(sorted_nodes.begin() + to, n);
        sorted_vars[n->Name()] = n;
      }
    }
  }

  std::vector<Node*> SortedOps() {
    Node* start_op_n = nullptr;
    std::unordered_set<Node*> ops;
    for (auto* op_n : nodes_set) {
      if (op_n && op_n->IsOp() && op_n->Op()) {
        // Initialize ops to all ops in the subgraph.
        ops.insert(op_n);

        if (!start_op_n) {
          // Find start op node whose inputs are produced outside the subgraph.
          bool is_found = false;
          for (auto* prev_op_n : GetPrevOpNodes(op_n)) {
            if (Has(prev_op_n)) {
              is_found = true;
              break;
            }
          }
          if (!is_found) {
            start_op_n = op_n;
          }
206 207 208
        }
      }
    }
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    std::vector<Node*> sorted_ops;
    sorted_ops.push_back(start_op_n);
    ops.erase(start_op_n);
    while (ops.size() > 0U) {
      std::unordered_set<Node*> erased_ops;
      for (auto* op_n : ops) {
        bool found_connected_ops = false;
        int from = 1;
        int to = sorted_ops.size();
        std::unordered_set<Node*> prev_op_nodes = GetPrevOpNodes(op_n);
        std::unordered_set<Node*> next_op_nodes = GetNextOpNodes(op_n);
        for (int i = sorted_ops.size(); i >= 0; --i) {
          if (prev_op_nodes.find(sorted_ops[i]) != prev_op_nodes.end()) {
            // Insert after i (i + 1)
            found_connected_ops = true;
            from = (i + 1 > from) ? i + 1 : from;
          }
          if (next_op_nodes.find(sorted_ops[i]) != next_op_nodes.end()) {
            // Insert before i
            found_connected_ops = true;
            to = (i < to) ? i : to;
          }
        }
        if (found_connected_ops) {
234 235 236
          if (from > to) {
            LOG(INFO) << "subgraph: {\n" << DebugString(Nodes()) << "}\n";
          }
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
          PADDLE_ENFORCE_LE(from, to, "Range [%d, %d] is invalid.", from, to);
          sorted_ops.insert(sorted_ops.begin() + to, op_n);
          erased_ops.insert(op_n);
        }
      }
      PADDLE_ENFORCE_GT(erased_ops.size(), 0U);
      for (auto* op_n : erased_ops) {
        ops.erase(op_n);
      }
    }
    return sorted_ops;
  }

  std::unordered_set<Node*> GetPrevOpNodes(Node* op_n) {
    PADDLE_ENFORCE_EQ(op_n && op_n->IsOp() && op_n->Op(), true,
                      "Node %p is not a op node.", op_n);

    std::unordered_set<Node*> prev_op_nodes;
    for (auto* in_var : op_n->inputs) {
      if (in_var && in_var->IsVar() && in_var->Var()) {
        for (auto* prev_op_n : in_var->inputs) {
          if (prev_op_n && prev_op_n->IsOp() && prev_op_n->Op()) {
            prev_op_nodes.insert(prev_op_n);
          }
        }
      }
    }
    return prev_op_nodes;
  }

  std::unordered_set<Node*> GetNextOpNodes(Node* op_n) {
    PADDLE_ENFORCE_EQ(op_n && op_n->IsOp() && op_n->Op(), true,
                      "Node %p is not a op node.", op_n);

    std::unordered_set<Node*> next_op_nodes;
    for (auto* out_var : op_n->outputs) {
      if (out_var && out_var->IsVar() && out_var->Var()) {
        for (auto* next_op_n : out_var->outputs) {
          if (next_op_n && next_op_n->IsOp() && next_op_n->Op()) {
            next_op_nodes.insert(next_op_n);
          }
        }
      }
    }
    return next_op_nodes;
282
  }
283 284 285 286 287 288 289 290 291 292 293 294 295

  void Sort() {
    if (!is_sorted) {
      sorted_nodes = SortedOps();
      SortVarsBasedOnSortedOps();
    }
    is_sorted = true;
  }

 private:
  std::unordered_set<Node*> nodes_set;
  bool is_sorted{false};
  std::vector<Node*> sorted_nodes;
296 297 298 299 300 301
};

}  // namespace fusion_group
}  // namespace ir
}  // namespace framework
}  // namespace paddle