detection.py 48.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18
from layer_function_generator import generate_layer_fn
X
Xin Pan 已提交
19
from layer_function_generator import autodoc, templatedoc
20
from ..layer_helper import LayerHelper
21 22
import tensor
import nn
C
chengduoZH 已提交
23
import math
24

C
chengduoZH 已提交
25
__all__ = [
26
    'prior_box',
C
chengduoZH 已提交
27
    'multi_box_head',
28 29 30 31
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
32
    'detection_map',
Y
Yuan Gao 已提交
33
    'rpn_target_assign',
34
    'anchor_generator',
C
chengduoZH 已提交
35
]
36

37 38 39
__auto__ = [
    'iou_similarity',
    'box_coder',
C
chengduoZH 已提交
40
]
41

42 43 44 45 46
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

47

Y
Yuan Gao 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def rpn_target_assign(loc,
                      scores,
                      anchor_box,
                      gt_box,
                      rpn_batch_size_per_im=256,
                      fg_fraction=0.25,
                      rpn_positive_overlap=0.7,
                      rpn_negative_overlap=0.3):
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
        fg_fraction(float): Target fraction of RoI minibatch that is labeled
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple: 
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox) is returned. The predicted_scores and
               predicted_location is the predicted result of the RPN.
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
               anchors, the F and B is depends on the input of this operator. 

    Examples:
        .. code-block:: python

        loc = layers.data(name='location', shape=[2, 80],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 40],
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
        gt_box = layers.data(name='gt_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        loc_pred, score_pred, loc_target, score_target =
            fluid.layers.detection_output(loc=location,
                                          scores=scores,
                                          anchor_box=anchor_box,
                                          gt_box=gt_box)
    """

    helper = LayerHelper('rpn_target_assign', **locals())
    # 1. Compute the regression target bboxes
    target_bbox = box_coder(
        prior_box=anchor_box,
        target_box=gt_box,
        code_type='encode_center_size',
        box_normalized=False)

    # 2. Compute overlaps between the prior boxes and the gt boxes overlaps
    iou = iou_similarity(x=gt_box, y=anchor_box)

    # 3. Assign target label to anchors
    loc_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    score_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    target_label = helper.create_tmp_variable(dtype=anchor_box.dtype)
    helper.append_op(
        type="rpn_target_assign",
        inputs={'Overlap': iou, },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
            'fg_fraction': fg_fraction,
        })

    # 4. Reshape and gather the target entry
    scores = nn.reshape(x=scores, shape=(-1, 1))
    loc = nn.reshape(x=loc, shape=(-1, 4))
    target_label = nn.reshape(x=target_label, shape=(-1, 1))
    target_bbox = nn.reshape(x=target_bbox, shape=(-1, 4))

    predicted_scores = nn.gather(scores, score_index)
    predicted_location = nn.gather(loc, loc_index)
    target_label = nn.gather(target_label, score_index)
    target_bbox = nn.gather(target_bbox, loc_index)
    return predicted_scores, predicted_loc, target_label, target_bbox


Y
Yuan Gao 已提交
177 178
def detection_output(loc,
                     scores,
179 180 181 182 183 184 185 186 187
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
188
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
189

190 191
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
192

193 194 195 196 197 198
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
199 200 201 202 203 204

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
205 206 207 208
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
231 232 233
        Variable: 
        
            The detection outputs is a LoDTensor with shape [No, 6].
234 235 236 237 238 239 240 241
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
242 243 244 245

    Examples:
        .. code-block:: python

246
            pb = layers.data(name='prior_box', shape=[10, 4],
247
                         append_batch_size=False, dtype='float32')
248
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
249
                          append_batch_size=False, dtype='float32')
250
            loc = layers.data(name='target_box', shape=[2, 21, 4],
251
                          append_batch_size=False, dtype='float32')
252
            scores = layers.data(name='scores', shape=[2, 21, 10],
253
                          append_batch_size=False, dtype='float32')
254
            nmsed_outs = fluid.layers.detection_output(scores=scores,
255 256 257 258 259
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
260 261 262 263 264
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
265
    old_shape = scores.shape
C
caoying03 已提交
266
    scores = nn.reshape(x=scores, shape=(-1, old_shape[-1]))
267
    scores = nn.softmax(input=scores)
C
caoying03 已提交
268
    scores = nn.reshape(x=scores, shape=old_shape)
Y
Yuan Gao 已提交
269
    scores = nn.transpose(scores, perm=[0, 2, 1])
270
    scores.stop_gradient = True
271
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
272 273 274 275 276 277 278 279 280 281 282 283 284
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
285
    nmsed_outs.stop_gradient = True
286
    return nmsed_outs
C
chengduoZH 已提交
287 288


X
Xin Pan 已提交
289
@templatedoc()
290 291
def detection_map(detect_res,
                  label,
292 293
                  class_num,
                  background_label=0,
294 295
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
296 297 298 299
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
341 342
    helper = LayerHelper("detection_map", **locals())

343 344 345 346 347 348 349 350 351 352 353 354 355 356
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

357 358 359 360 361
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
362
            'HasState': has_state,
363 364 365 366 367 368 369 370 371 372 373 374 375
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
376 377
            'ap_type': ap_version,
            'class_num': class_num,
378
        })
379
    return map_out
380 381


382 383 384 385
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
386
    """
Y
yuyang18 已提交
387 388
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
389
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
390 391 392 393 394 395 396 397
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
398 399 400
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
401

Y
yuyang18 已提交
402
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
403 404 405
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
406 407 408
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

409 410 411 412 413
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
414 415 416 417 418 419
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
420
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
421
           'bipartite' or 'per_prediction'. [default 'bipartite'].
422 423
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
424
            on the maximum distance, 0.5 by default.
425
    Returns:
Y
yuyang18 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
449 450 451 452 453 454 455
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
456 457 458 459
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
477

478 479 480 481 482
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
483

484
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
485

486 487 488
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
489

490 491
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
492

493
        Otherwise,
C
chengduoZH 已提交
494

495 496
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
497

498
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
499

500 501
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
502 503
    
    .. code-block:: text
C
chengduoZH 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        tuple: 
               A tuple(out, out_weight) is returned. out is a 3D Tensor with 
               shape [N, P, K], N and P is the same as they are in 
               `neg_indices`, K is the same as it in input of X. If 
               `match_indices[i][j]`. out_weight is the weight for output with 
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
567
             normalize=True,
568 569
             sample_size=None):
    """
Y
yuyang18 已提交
570
    **Multi-box loss layer for object detection algorithm of SSD**
571 572 573 574 575 576 577

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
578
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
579

580
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
581

582
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
583

584
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
585

586
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
587

588
      2.2. Compute confidence loss.
Y
yuyang18 已提交
589

590 591
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
592

593
    4. Assign classification and regression targets
Y
yuyang18 已提交
594

595
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
596

597
      4.2. Assign regression targets.
Y
yuyang18 已提交
598

599
      4.3. Assign classification targets.
Y
yuyang18 已提交
600

601
    5. Compute the overall objective loss.
Y
yuyang18 已提交
602

603
      5.1 Compute confidence loss.
Y
yuyang18 已提交
604

605
      5.1 Compute localization loss.
Y
yuyang18 已提交
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
630
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
631
        neg_overlap (float): The negative overlap upper bound for the unmatched
632
            predictions. Use only when mining_type is 'max_negative',
633 634 635 636
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
637
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
638 639
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
640
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
641
            of output locations, True by default.
642 643
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
644 645

    Returns:
Y
yuyang18 已提交
646 647
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
648 649

    Raises:
Y
yuyang18 已提交
650 651
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
671 672 673 674 675 676 677 678 679
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape

    def __reshape_to_2d(var):
C
caoying03 已提交
680
        return nn.reshape(x=var, shape=[-1, var.shape[-1]])
681 682 683 684 685

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
686 687
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
688 689 690

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
C
caoying03 已提交
691
    gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, ))
692
    gt_label.stop_gradient = True
693 694 695 696 697 698 699
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
700
    target_label.stop_gradient = True
701 702 703
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)

    # 3. Mining hard examples
C
caoying03 已提交
704
    conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior))
705
    conf_loss.stop_gradient = True
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
            'neg_dist_threshold': neg_pos_ratio,
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
749

750 751 752 753
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

754 755 756 757
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

758 759 760 761 762 763 764 765
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

766 767 768 769
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

770 771
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
772
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
C
caoying03 已提交
773
    loss = nn.reshape(x=loss, shape=[-1, num_prior])
774 775 776 777 778
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

779
    return loss
C
chengduoZH 已提交
780 781


782 783 784 785
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
786
              aspect_ratios=[1.],
787 788 789 790 791 792 793
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
              name=None):
    """
Q
update  
qiaolongfei 已提交
794
    **Prior Box Operator**
795 796 797 798 799 800 801 802 803 804 805

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
806
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
807 808
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
809 810
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
811 812 813 814
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
815
       step(list|turple): Prior boxes step across width and height, If
816
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
817 818
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
819 820 821 822
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
Q
update  
qiaolongfei 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
836 837 838 839


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
840 841 842 843 844 845 846

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
847 848 849 850
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

866 867 868 869 870 871 872 873 874 875 876
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
877 878
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
895
def multi_box_head(inputs,
C
chengduoZH 已提交
896 897
                   image,
                   base_size,
C
chengduoZH 已提交
898
                   num_classes,
C
chengduoZH 已提交
899
                   aspect_ratios,
900 901
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
902 903
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
904 905 906 907
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
908 909
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
910
                   clip=False,
C
chengduoZH 已提交
911
                   kernel_size=1,
C
chengduoZH 已提交
912
                   pad=0,
C
chengduoZH 已提交
913
                   stride=1,
C
chengduoZH 已提交
914
                   name=None):
C
chengduoZH 已提交
915
    """
C
chengduoZH 已提交
916 917
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
918
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
919
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
920 921

    Args:
922
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
923
            of all Variables is NCHW.
C
chengduoZH 已提交
924 925
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
926 927
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
950
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
951 952 953 954 955 956
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
C
chengduoZH 已提交
957 958

    Returns:
Q
update  
qiaolongfei 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
974

C
chengduoZH 已提交
975 976 977

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
978 979

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
980 981 982 983 984 985 986 987 988 989
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
990 991
    """

C
chengduoZH 已提交
992 993 994 995 996 997 998
    def _reshape_with_axis_(input, axis=1):
        if not (axis > 0 and axis < len(input.shape)):
            raise ValueError("The axis should be smaller than "
                             "the arity of input and bigger than 0.")
        new_shape = [
            -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
        ]
C
caoying03 已提交
999
        out = nn.reshape(x=input, shape=new_shape)
C
chengduoZH 已提交
1000
        return out
1001

1002 1003
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1004

C
chengduoZH 已提交
1005 1006 1007 1008
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1009 1010
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1011

C
chengduoZH 已提交
1012 1013 1014 1015 1016
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1017
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
        for ratio in xrange(min_ratio, max_ratio + 1, step):
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1050 1051
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1052 1053
    box_results = []
    var_results = []
C
chengduoZH 已提交
1054 1055
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1056 1057
        max_size = max_sizes[i]

1058
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1059
            min_size = [min_size]
C
chengduoZH 已提交
1060 1061
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1062 1063 1064 1065

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1066
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1067
                aspect_ratio = [aspect_ratio]
1068
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1069

1070 1071
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
                             variance, flip, clip, step, offset)
C
chengduoZH 已提交
1072 1073 1074 1075 1076

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1077

1078
        # get loc
Y
Yuan Gao 已提交
1079
        num_loc_output = num_boxes * 4
1080
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1081
            input=input,
1082 1083 1084 1085 1086
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1087
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
1088 1089 1090 1091
        new_shape = [
            mbox_loc.shape[0],
            mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
        ]
C
caoying03 已提交
1092
        mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape)
Y
Yuan Gao 已提交
1093
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1094

1095
        # get conf
C
chengduoZH 已提交
1096
        num_conf_output = num_boxes * num_classes
1097
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1098
            input=input,
1099 1100 1101 1102
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1103
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
Y
Yuan Gao 已提交
1104 1105 1106 1107
        new_shape = [
            conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
            conf_loc.shape[3] / num_classes, num_classes
        ]
C
caoying03 已提交
1108
        conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape)
Y
Yuan Gao 已提交
1109
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1110

C
chengduoZH 已提交
1111 1112 1113
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1114 1115
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1125 1126
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1127

1128 1129
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1130
    return mbox_locs_concat, mbox_confs_concat, box, var
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var