test_auto_checkpoint.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet
import os
import sys

23
from paddle.distributed.fleet.utils.fs import LocalFS, HDFSClient
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
import paddle.fluid.incubate.checkpoint.auto_checkpoint as acp
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel
from paddle.fluid.framework import program_guard
from paddle.fluid import unique_name

import numpy as np
from paddle.io import Dataset, BatchSampler, DataLoader

from paddle.fluid.tests.unittests.auto_checkpoint_utils import AutoCheckpointBase, get_logger

logger = get_logger()


class AutoCheckPointACLBase(AutoCheckpointBase):
    def setUp(self):
        get_logger()
        logger.info("enter tests")

        self._old_environ = dict(os.environ)
        proc_env = {
            "PADDLE_RUNNING_ENV": "PADDLE_EDL_AUTO_CHECKPOINT",
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_RUNNING_PLATFORM": "PADDLE_CLOUD",
            "PADDLE_JOB_ID": "test_job_auto",
            "PADDLE_EDL_HDFS_HOME": "/usr/local/hadoop-2.7.7",
            "PADDLE_EDL_HDFS_NAME": "",
            "PADDLE_EDL_HDFS_UGI": "",
            "PADDLE_EDL_HDFS_CHECKPOINT_PATH": "auto_checkpoint",
            "PADDLE_EDL_ONLY_FOR_CE_TEST": "1",
            "PADDLE_EDL_FS_CACHE": ".auto_checkpoint_test",
            "PADDLE_EDL_SAVE_CHECKPOINT_INTER": "0"
        }
        os.environ.update(proc_env)

    def tearDown(self):
        os.environ.clear()
        os.environ.update(self._old_environ)

    def _run_normal(self):
        exe, main_prog, startup_prog = self._generate()

        save_dir = "./run_save_model"
        fs = LocalFS()

        fs.delete(save_dir)
        logger.info("begin _run_normal")

        compiled, data_loader, optimizer, loss, image, label = self._init_env(
            exe, main_prog, startup_prog)
        for i in range(3):
            self.assertEqual(acp._get_train_epoch_range(), None)
            self.assertEqual(acp.g_acp_type, None)
            for data in data_loader():
                self.assertEqual(acp.g_acp_type, None)
                self.assertEqual(acp._get_train_epoch_range(), None)
                fetch = exe.run(compiled, feed=data, fetch_list=[loss])

        self.assertEqual(acp.g_acp_type, None)
        self.assertEqual(acp._get_train_epoch_range(), None)

        m1 = PaddleModel(exe, compiled)
        m1.serialize(save_dir)

        m2 = PaddleModel(exe, compiled)
        m2.deserialize(save_dir)

        logger.info("end _run_normal")
        fs.delete(save_dir)

    def _not_use_train(self):
        logger.info("begin _not_use_train")
        exe, main_prog, startup_prog = self._generate()

        compiled, data_loader, optimizer, loss, image, label = \
            self._init_env(exe, main_prog, startup_prog)

        epochs = []
        for i in acp.train_epoch_range(3, 0):
            epochs.append(i)
            for data in data_loader():
                fetch = exe.run(compiled, feed=data, fetch_list=[loss])

        self.assertEqual(epochs, [0, 1, 2])
        logger.info("end _not_use_train")

    def _run_save_0(self, break_epoch_no=None):
        logger.info("begin _run_save_0")
        fs = LocalFS()
        save_dir = "./run_save_0"
        fs.delete(save_dir)

        exe, main_prog, startup_prog = self._generate()

        compiled, data_loader, optimizer, loss, image, label = \
            self._init_env(exe, main_prog, startup_prog)

        o = None
        i = 0
        name = None
        for i in acp.train_epoch_range(3, 0):
            o = acp._get_train_epoch_range()
            name = o.name

            for data in data_loader():
                fetch = exe.run(compiled, feed=data, fetch_list=[loss])

            self.assertEqual(len(o._exe_status), 1)

            if break_epoch_no is not None:
                if i == break_epoch_no:
                    break

        o = acp._get_train_epoch_range()
        assert o == None, "now train epoch must not exits now"
        if break_epoch_no is None:
            self.assertEqual(i, 2)
        else:
            self.assertEqual(i, break_epoch_no)

        fs.delete(save_dir)
        logger.info("end _run_save_0")

    def _run_load_0(self, break_epoch_no=None):
        logger.info("begin _run_load_0")
        exe, main_prog, startup_prog = self._generate()

        fs = LocalFS()
        save_dir = "./run_load_0"
        fs.delete(save_dir)

        compiled, data_loader, optimizer, loss, image, label = self._init_env(
            exe, main_prog, startup_prog)

        o = None
        i = 0
        check = False

        epochs = []
        for i in acp.train_epoch_range(3, 0):
            epochs.append(i)

            for data in data_loader():
                fetch = exe.run(compiled, feed=data, fetch_list=[loss])

        o = acp._get_train_epoch_range()
        self.assertTrue(o == None, "now train epoch must not exits now")
        self.assertEqual(i, 2)

        if break_epoch_no is not None:
            if break_epoch_no == 0:
                self.assertEqual(epochs, [0, 1, 2])
            elif break_epoch_no == 1:
                self.assertEqual(epochs, [1, 2])
            elif break_epoch_no == 2:
                self.assertEqual(epochs, [2])
        else:
            self.assertEqual(epochs, [2])

        fs.delete(save_dir)
        logger.info("begin _run_load_0")


class AutoCheckpointTest(AutoCheckPointACLBase):
    def setUp(self):
        get_logger()
        logger.info("enter tests")

        self._old_environ = dict(os.environ)
        proc_env = {
            "PADDLE_RUNNING_ENV": "PADDLE_EDL_AUTO_CHECKPOINT",
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_RUNNING_PLATFORM": "PADDLE_CLOUD",
            "PADDLE_JOB_ID": "test_job_auto_1",
            "PADDLE_EDL_HDFS_HOME": "/usr/local/hadoop-2.7.7",
            "PADDLE_EDL_HDFS_NAME": "",
            "PADDLE_EDL_HDFS_UGI": "",
            "PADDLE_EDL_HDFS_CHECKPOINT_PATH": "auto_checkpoint_1",
            "PADDLE_EDL_ONLY_FOR_CE_TEST": "1",
            "PADDLE_EDL_FS_CACHE": ".auto_checkpoint_test_1",
            "PADDLE_EDL_SAVE_CHECKPOINT_INTER": "0"
        }
        os.environ.update(proc_env)

    def test_normal(self):
        logger.info("begin test_normal")
        checker = acp._get_checker()

        fs = HDFSClient(checker.hdfs_home, None)

        fs.delete(checker.hdfs_checkpoint_path)
        self._clear_envs()
        self._reset_generator()
        self._run_normal()
        self._readd_envs()
        logger.info("end test_normal")

    def test_basic(self):
        logger.info("begin test_basic")
        checker = acp._get_checker()
        self.assertEqual(checker.run_env, "PADDLE_EDL_AUTO_CHECKPOINT")
        self.assertEqual(checker.platform, "PADDLE_CLOUD")
        self.assertEqual(checker.save_checkpoint_inter, 0)
        print(checker)

        fs = HDFSClient(checker.hdfs_home, None)

        fs.delete(checker.hdfs_checkpoint_path)
        self._reset_generator()
        self._run_save_0()

        self._reset_generator()
        self._run_load_0()

        logger.info("end test_basic")

    def test_not_use(self):
        logger.info("begin test_not_use")

        self._clear_envs()
        self._reset_generator()
        self._not_use_train()
        self._readd_envs()

        logger.info("end test_not_use")

    def test_multiple(self):
        checker = acp._get_checker()
        fs = HDFSClient(checker.hdfs_home, None)
        fs.delete(checker.hdfs_checkpoint_path)
        self._reset_generator()

        logger.info("begin test_multiple")
        fs = LocalFS()
        save_dir = "./run_save_0"
        fs.delete(save_dir)

        exe, main_prog1, startup_prog1 = self._generate()
        _, main_prog2, startup_prog2 = self._generate()

        compiled1, data_loader1, optimizer1, loss1, image1, label1 = \
            self._init_env(exe, main_prog1, startup_prog1)

        compiled2, data_loader2, optimizer2, loss2, image2, label2 = \
            self._init_env(exe, main_prog2, startup_prog2)

        o = None
        epochs = []
        for i in acp.train_epoch_range(3, 0):
            for data in data_loader1():
                fetch = exe.run(compiled1, feed=data, fetch_list=[loss1])

            for data in data_loader2():
                fetch = exe.run(compiled2, feed=data, fetch_list=[loss2])

            o = acp._get_train_epoch_range()
            self.assertEqual(len(o._exe_status), 2)
            print(o._exe_status)
            epochs.append(i)

        o = acp._get_train_epoch_range()
        self.assertTrue(o == None, "now train epoch must not exits now")
        self.assertEqual(i, 2)
        self.assertEqual(epochs, [0, 1, 2])

        fs.delete(save_dir)
        logger.info("end test_multiple")

    def test_distributed_basic(self):
        checker = acp._get_checker()
        fs = HDFSClient(checker.hdfs_home, None)
        fs.delete(checker.hdfs_checkpoint_path)
        self._reset_generator()

        logger.info("begin test_distributed_basic")
        fs = LocalFS()
        save_dir = "./run_save_0"
        fs.delete(save_dir)

        #basic
        exe, main_prog, startup_prog = self._generate()

        compiled, data_loader, optimizer, loss, image, label = \
            self._init_env(exe, main_prog, startup_prog, minimize=False)

        #fleet
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:6070"

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

        with fluid.program_guard(main_prog, startup_prog):
            dist_optimizer = fleet.distributed_optimizer(optimizer)
            dist_optimizer.minimize(loss)

        exe.run(startup_prog)

        o = None
        i = 0
        name = None
        for i in acp.train_epoch_range(3, 0):
            o = acp._get_train_epoch_range()
            name = o.name
            logger.info("_run_save_0 name:{} epoch_no:{}".format(o.name, i))

            for data in data_loader():
                fetch = exe.run(fleet.main_program,
                                feed=data,
                                fetch_list=[loss])

            self.assertEqual(len(o._exe_status), 1)

        o = acp._get_train_epoch_range()
        assert o == None, "now train epoch must not exits now"
        self.assertEqual(i, 2)

        fs.delete(save_dir)

        logger.info("end test_distributed_basic")

    def test_checker(self):
        os.environ.pop("PADDLE_JOB_ID", None)
        try:
            checker = AutoCheckpointChecker()
            self.assertFalse(True)
        except Exception as e:
            pass
        os.environ["PADDLE_JOB_ID"] = "test_job_auto_1"


if __name__ == '__main__':
    unittest.main()