test_weight_decay_extend.py 6.2 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import six
C
chengduo 已提交
18 19 20 21 22 23 24
import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid as fluid
import contextlib

P
pangyoki 已提交
25 26
paddle.enable_static()

C
chengduo 已提交
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def fake_imdb_reader(word_dict_size,
                     sample_num,
                     lower_seq_len=100,
                     upper_seq_len=200,
                     class_dim=2):
    def __reader__():
        for _ in six.moves.range(sample_num):
            length = np.random.random_integers(
                low=lower_seq_len, high=upper_seq_len, size=[1])[0]
            ids = np.random.random_integers(
                low=0, high=word_dict_size - 1, size=[length]).astype('int64')
            label = np.random.random_integers(
                low=0, high=class_dim - 1, size=[1]).astype('int64')[0]
            yield ids, label

    return __reader__


C
chengduo 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def get_places():
    places = [fluid.CPUPlace()]
    if fluid.core.is_compiled_with_cuda():
        places.append(fluid.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestWeightDecay(unittest.TestCase):
    def setUp(self):
90 91 92 93 94
        self.word_dict_len = 5147
        batch_size = 2
        reader = fake_imdb_reader(self.word_dict_len, batch_size * 100)
        reader = paddle.batch(reader, batch_size=batch_size)()
        self.train_data = [next(reader) for _ in range(3)]
C
chengduo 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        self.learning_rate = .5

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_weight_decay(self, place, model):
C
cnn 已提交
117
        paddle.seed(1)
L
Leo Chen 已提交
118
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
119 120
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
121

C
chengduo 已提交
122 123 124 125
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
126
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
            AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
                fluid.optimizer.Adam)

            optimizer = AdamW(
                learning_rate=self.learning_rate,
                weight_decay=self.learning_rate)

            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])

        return param_sum

    def check_weight_decay2(self, place, model):
C
cnn 已提交
140
        paddle.seed(1)
L
Leo Chen 已提交
141
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
142 143
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
144

C
chengduo 已提交
145 146 147 148 149
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

150
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
151

152 153 154 155
            optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)

            params_grads = optimizer.backward(avg_cost)

C
chengduo 已提交
156 157 158 159 160 161 162 163
            param_list = [(var, var * self.learning_rate)
                          for var in main_prog.block(0).all_parameters()]

            for params in param_list:
                updated_p = fluid.layers.elementwise_sub(
                    x=params[0], y=params[1])
                fluid.layers.assign(input=updated_p, output=params[0])

164 165
            optimizer.apply_optimize(avg_cost, startup_prog, params_grads)

C
chengduo 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_weight_decay(self):
        for place in get_places():
            model = partial(bow_net, is_sparse=False)
            param_sum1 = self.check_weight_decay(place, model)
            param_sum2 = self.check_weight_decay2(place, model)

            for i in range(len(param_sum1)):
                assert np.isclose(a=param_sum1[i], b=param_sum2[i], rtol=5e-5)


if __name__ == '__main__':
    unittest.main()