selected_rows.cc 7.8 KB
Newer Older
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Q
qijun 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
qijun 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13 14
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/selected_rows.h"
Q
qijun 已提交
16 17

namespace paddle {
18
namespace framework {
19

Y
Yancey1989 已提交
20
struct ReAllocateVisitor {
21 22
  ReAllocateVisitor(const framework::DDim& dims, framework::Tensor* tensor)
      : dims_(dims), tensor_(tensor) {}
Y
Yancey1989 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  template <typename T>
  void operator()() const {
    framework::Tensor cpu_tensor;
    platform::CPUPlace cpu;
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

  framework::DDim dims_;
Q
qiaolongfei 已提交
38
  framework::Tensor* tensor_;
Y
Yancey1989 已提交
39 40
};

Y
update  
Yancey1989 已提交
41
struct TensorCopyVisitor {
Y
Yancey1989 已提交
42 43 44 45
  TensorCopyVisitor(framework::Tensor* dst, int64_t dst_offset,
                    const framework::Tensor src, int64_t src_offset,
                    int64_t size)
      : dst_(dst),
Y
Yancey1989 已提交
46 47 48 49 50 51
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
D
dzhwinter 已提交
52
  void apply() const {
Y
Yancey1989 已提交
53 54 55 56
    // TODO(Yancey1989): support other place
    platform::CPUPlace cpu;
    memory::Copy(cpu, dst_->mutable_data<T>(cpu) + dst_offset_, cpu,
                 src_.data<T>() + src_offset_, size_ * sizeof(T));
Y
Yancey1989 已提交
57 58 59 60 61 62 63 64 65
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  framework::Tensor src_;
  int64_t src_offset_;
  int64_t size_;
};

Q
Qiao Longfei 已提交
66 67 68 69 70 71 72
struct TensorFillVisitor {
  TensorFillVisitor(framework::Tensor* dst, int64_t dst_offset, int64_t size,
                    float value)
      : dst_(dst), dst_offset_(dst_offset), size_(size) {}

  template <typename T>
  void apply() const {
Q
Qiao Longfei 已提交
73
    // TODO(qiao): support other place
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    platform::CPUPlace cpu;
    auto* tensor_data = dst_->mutable_data<T>(cpu);
    auto* start = tensor_data + dst_offset_;
    auto* end = start + size_;
    std::fill(start, end, static_cast<T>(0.0));
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  int64_t size_;
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
                       const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {
    // the 2st field, rows information
    auto& rows = selected_rows.rows();
    uint64_t size = rows.size();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    for (uint64_t i = 0; i < size; ++i) {
      os.write(reinterpret_cast<const char*>(&rows[i]), sizeof(rows[i]));
    }
  }
  {
    // the 3st field, the height of SelectedRows
    int64_t height = selected_rows.height();
    os.write(reinterpret_cast<const char*>(&height), sizeof(height));
  }
  // the 4st field, Tensor data
Y
Yi Wang 已提交
107
  TensorToStream(os, selected_rows.value(), dev_ctx);
108 109
}

Y
Yancey 已提交
110 111
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
                           const platform::DeviceContext& dev_ctx) {
112 113 114 115
  {
    // the 1st field, unit32_t version for SelectedRows
    uint32_t version;
    is.read(reinterpret_cast<char*>(&version), sizeof(version));
116 117 118
    PADDLE_ENFORCE_EQ(version, 0U,
                      platform::errors::InvalidArgument(
                          "Only version 0 SelectedRows is supported."));
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  }
  {
    // the 2st field, rows information
    uint64_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    auto& rows = *selected_rows->mutable_rows();
    rows.resize(size);
    for (uint64_t i = 0; i < size; ++i) {
      is.read(reinterpret_cast<char*>(&rows[i]), sizeof(int64_t));
    }
  }
  {
    // the 3st field, the height of the SelectedRows
    int64_t height;
    is.read(reinterpret_cast<char*>(&height), sizeof(int64_t));
    selected_rows->set_height(height);
  }
  // the 4st field, tensor which contains the data
Y
Yi Wang 已提交
137
  TensorFromStream(is, selected_rows->mutable_value(), dev_ctx);
138 139
}

Y
Yancey1989 已提交
140 141 142 143 144
bool SelectedRows::HasKey(int64_t key) const {
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152 153 154 155
int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown,
                                     bool is_test) {
  if (is_test) {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

156 157 158 159
  rwlock_->RDLock();
  auto iter = id_to_index_.find(key);
  if (iter == id_to_index_.end()) {
    rwlock_->UNLock();
160 161 162
    PADDLE_ENFORCE_EQ(
        auto_grown, true,
        platform::errors::NotFound("Input key(%lld) is not found.", key));
163 164 165 166 167
    rwlock_->WRLock();
    auto map_size = id_to_index_.size();
    auto vector_size = rows_.size();
    if (map_size != vector_size) {
      rwlock_->UNLock();
168 169 170
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Row map size(%zu) should be equal to rows size(%zu).", map_size,
          vector_size));
171 172 173
    }
    auto write_iter = id_to_index_.find(key);
    if (write_iter == id_to_index_.end()) {
174
      int row_num = rows_.size();
175 176
      if (row_num == value_->dims()[0]) {
        rwlock_->UNLock();
177 178 179 180
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Selected rows is full, then length exceed the length of first "
            "dimension (%d).",
            row_num));
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      }
      // key logic to put a key into id_to_index_
      rows_.push_back(key);
      auto index = static_cast<int64_t>(rows_.size() - 1);
      id_to_index_[key] = index;
      rwlock_->UNLock();
      return index;
    } else {
      auto index = write_iter->second;
      rwlock_->UNLock();
      return index;
    }
  } else {
    auto index = iter->second;
    rwlock_->UNLock();
    return index;
  }
}

void SelectedRows::SyncIndex() {
  rwlock_->WRLock();
  id_to_index_.clear();
  for (size_t i = 0; i < rows_.size(); ++i) {
    id_to_index_[rows_[i]] = i;
  }
  rwlock_->UNLock();
}

void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
Q
Qiao Longfei 已提交
210
                       bool auto_grown, bool is_test) {
211 212 213
  PADDLE_ENFORCE_EQ(value->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The value tensor is not initialized."));
214
  if (ids.numel() == 0) {
M
minqiyang 已提交
215
    VLOG(3) << "keys is empty, please check data!";
Q
qiaolongfei 已提交
216 217
  } else {
    int64_t value_width = value_->numel() / value_->dims()[0];
218 219 220 221 222 223 224
    PADDLE_ENFORCE_EQ(
        value_width, value->numel() / value->dims()[0],
        platform::errors::InvalidArgument(
            "Output tensor should have the same shape with table "
            "except the first dimmension, excepted value width not counting "
            "the first dimension is %d, actual value width is %d.",
            value_width, value->numel() / value->dims()[0]));
225
    for (int i = 0; i < ids.numel(); ++i) {
Q
Qiao Longfei 已提交
226 227
      auto id = ids.data<int64_t>()[i];
      int64_t index = AutoGrownIndex(id, auto_grown, is_test);
Q
Qiao Longfei 已提交
228
      if (index < 0) {
Q
Qiao Longfei 已提交
229
        VLOG(5) << "id " << id << " not in the table, return 0";
Q
Qiao Longfei 已提交
230
        framework::VisitDataType(
Y
Yu Yang 已提交
231
            value_->type(),
Q
Qiao Longfei 已提交
232 233 234
            TensorFillVisitor(value, i * value_width, value_width, 0.0));
      } else {
        framework::VisitDataType(
Y
Yu Yang 已提交
235
            value_->type(),
Q
Qiao Longfei 已提交
236 237 238
            TensorCopyVisitor(value, i * value_width, *value_.get(),
                              index * value_width, value_width));
      }
Y
Yancey1989 已提交
239 240
    }
  }
Y
Yancey1989 已提交
241 242
}

243
}  // namespace framework
Q
qijun 已提交
244
}  // namespace paddle