sequence_expand_op.h 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/device_context.h"
W
wanghaoshuang 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
template <typename DeviceContext, typename T>
struct SequenceExpandFunctor {
  void operator()(const DeviceContext& ctx, const LoDTensor& x, LoDTensor* out);
};

// template <typename DeviceContext, typename T>
// struct SequenceExpandGradFunctor {};

template <typename T>
void SequenceExpandFunctor<platform::CPUDeviceContext, T>::operator()(
    const platform::CPUDeviceContext& context, const LoDTensor& x,
    LoDTensor* out) {
  x_dims = x.dims();
  size_t element_len = framework::product(x_dims) / x_dims[0];
  T* out_data = out->mutable_data<T>(context.GetPlace());
  auto out_starts = out->lod().back();

  for (size_t i = 0; i < out_starts.size() - 1; i++) {
    int scale = out_starts[i + 1] - out_starts[i];
    Eigen::TensorMap<
        Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
        x_t(x_data, 1, element_len);
    Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
        out_t(out_data, scale, element_len);
    Eigen::array<int, 2> cast({{scale, 1}});
    out_t.device(*context.eigen_device()) = x_t.broadcast(cast);
    x_data += element_len;
    out_data += element_len * scale;
  }
}

Q
QI JUN 已提交
57
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
58
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
59 60 61 62 63
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
64
    auto x_dims = x->dims();
W
wanghaoshuang 已提交
65
    auto* y = context.Input<LoDTensor>("Y");
Q
Qiao Longfei 已提交
66
    PADDLE_ENFORCE(!y->lod().empty(), "y should have lod");
67 68
    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims[0]),
                      y->lod().back().size() - 1,
W
wanghaoshuang 已提交
69 70 71
                      "The size of last lod level in Input(Y)"
                      "must be equal to dims[0] of Input(X).");
    out->set_lod(y->lod());
D
dzhwinter 已提交
72 73
    SequenceExpandFunctor<DeviceContext, T> functor;
    functor(context.template device_context<DeviceContext>(), *x, out);
W
wanghaoshuang 已提交
74 75 76
  }
};

77 78 79 80 81 82 83 84 85 86 87 88
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
Q
QI JUN 已提交
89
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
90
class SequenceExpandGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
91 92
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
93 94 95
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Input<LoDTensor>("Out");
W
wanghaoshuang 已提交
96
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
97
    auto out_last_level = out->lod().back();
W
wanghaoshuang 已提交
98 99 100
    d_x->set_lod(x->lod());
    const T* d_out_data = d_out->data<T>();
    T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
101
    size_t element_len = d_out->numel() / d_out->dims()[0];
W
wanghaoshuang 已提交
102 103 104 105 106 107 108
    for (size_t i = 0; i < out_last_level.size() - 1; ++i) {
      size_t repeat = out_last_level[i + 1] - out_last_level[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
      d_out_t(d_out_data, static_cast<int>(repeat), element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>
      d_x_t(d_x_data, static_cast<int>(element_len));
Q
QI JUN 已提交
109 110 111
      auto place =
          context.template device_context<DeviceContext>().eigen_device();
      d_x_t.device(*place) = d_out_t.sum(Eigen::array<int, 1>({{0}}));
W
wanghaoshuang 已提交
112 113
      d_out_data += (repeat * element_len);
      d_x_data += element_len;
W
wanghaoshuang 已提交
114
    }
W
wanghaoshuang 已提交
115 116 117 118 119
  }
};

}  // namespace operators
}  // namespace paddle