framework.py 31.2 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Q
qiaolongfei 已提交
2
import contextlib
3

Y
Yu Yang 已提交
4
import numpy as np
Q
qiaolongfei 已提交
5

6
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
7
from . import core
Y
Yu Yang 已提交
8

9 10
__all__ = [
    'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
Y
Yu Yang 已提交
11 12
    'default_main_program', 'program_guard', 'switch_startup_program',
    'switch_main_program'
13
]
Y
Yu Yang 已提交
14

Q
qiaolongfei 已提交
15 16 17 18 19
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()

Q
Qiao Longfei 已提交
20 21 22 23
USE_CPU = core.kUseCPU()
USE_CUDNN = core.kUseMKLDNN()
USE_MKLDNN = core.kUseMKLDNN()

Q
qiaolongfei 已提交
24 25 26 27 28 29 30

def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
31

Q
Qiao Longfei 已提交
32
def unique_name(prefix):
33 34 35 36 37 38 39 40 41
    """
    Generate unique names with prefix

    Args:
        prefix(str): The prefix of return string

    Returns(str): A unique string with the prefix

    """
Q
Qiao Longfei 已提交
42 43 44 45
    uid = core.unique_integer(prefix)  # unique during whole process.
    return "_".join([prefix, str(uid)])


46
def convert_np_dtype_to_dtype_(np_dtype):
47 48 49 50 51 52 53 54
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

    Returns(core.DataType): the data type in Paddle

    """
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
        return core.DataType.FP32
    elif dtype == np.float64:
        return core.DataType.FP64
    elif dtype == np.float16:
        return core.DataType.FP16
    elif dtype == np.int32:
        return core.DataType.INT32
    elif dtype == np.int16:
        return core.DataType.INT16
    elif dtype == np.int64:
        return core.DataType.INT64
    elif dtype == np.bool:
        return core.DataType.BOOL
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
75 76 77 78 79 80 81 82 83
    """
    Check the data type is floating or not.
    Args:
        dtype(np.dtype|core.DataType): data type.
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
84 85 86
    if not isinstance(dtype, core.DataType):
        dtype = convert_np_dtype_to_dtype_(dtype)

87
    return dtype in [core.DataType.FP16, core.DataType.FP32, core.DataType.FP64]
88 89


Y
Yang Yang(Tony) 已提交
90
def _debug_string_(proto, throw_on_error=True):
91 92 93 94 95 96 97 98 99 100 101
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
102
    error_fields = list()
Y
Yang Yang(Tony) 已提交
103
    if not proto.IsInitialized(error_fields) and throw_on_error:
Y
Yu Yang 已提交
104 105 106 107 108
        raise ValueError("{0} are not initialized\nThe message is {1}".format(
            error_fields, proto))
    return proto.__str__()


Y
Yu Yang 已提交
109
class Variable(object):
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
        dtype(np.dtype|core.DataType|str): The data type of variable.
        lod_level(int): The level of lod tensor. 0 means there is not a time
            series data.
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
142 143
    def __init__(self,
                 block,
Y
Yu Yang 已提交
144
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
145 146 147 148
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
Q
QI JUN 已提交
149
                 persistable=None,
Y
Yu Yang 已提交
150
                 stop_gradient=False,
Y
Yu Yang 已提交
151
                 **kwargs):
Y
Yu Yang 已提交
152 153 154 155
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
D
Dong Zhihong 已提交
156 157 158 159
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
160
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
161
            is_new_var = True
Y
Yu Yang 已提交
162

Y
Yu Yang 已提交
163 164 165 166 167 168 169 170
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
171
        if shape is not None:
Y
Yu Yang 已提交
172
            if is_new_var:
173
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
174 175 176 177 178 179 180 181
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
182
        if dtype is not None:
Y
Yu Yang 已提交
183
            if not isinstance(dtype, core.DataType):
184
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
185
            if is_new_var:
F
fengjiayi 已提交
186
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
187
            else:
F
fengjiayi 已提交
188
                old_dtype = self.dtype
Q
QI JUN 已提交
189
                if dtype != old_dtype:
Y
Yu Yang 已提交
190 191 192 193 194
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
195 196

        if lod_level is not None:
Y
Yu Yang 已提交
197
            if is_new_var:
198
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
199 200 201 202 203 204 205
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
206 207 208 209 210 211 212 213 214 215 216
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

Y
Yu Yang 已提交
217
        self.block.vars[name] = self
Y
Yu Yang 已提交
218
        self.op = None
Y
Yu Yang 已提交
219
        self.stop_gradient = stop_gradient
Y
Yu Yang 已提交
220

221
    def __str__(self):
Y
Yang Yang(Tony) 已提交
222 223 224
        return self.to_string(True)

    def to_string(self, throw_on_error):
225 226 227 228 229 230 231 232 233 234
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.

        Returns(str): The debug string.

        """
235 236
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
237
        return _debug_string_(proto, throw_on_error)
238 239 240

    __repr__ = __str__

241 242 243 244
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
245 246 247 248
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
249 250
    @property
    def name(self):
251
        return self.desc.name()
Y
Yu Yang 已提交
252 253 254 255

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
256
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
257 258

    @property
F
fengjiayi 已提交
259 260
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
261 262 263

    @property
    def lod_level(self):
264
        return self.desc.lod_level()
Y
Yu Yang 已提交
265

Y
Yu Yang 已提交
266 267 268 269
    @property
    def type(self):
        return self.desc.type()

Y
Yu Yang 已提交
270 271
    @staticmethod
    def _unique_var_name_():
272 273 274
        prefix = "_generated_var"
        uid = core.unique_integer(prefix)  # unique during whole process.
        return "_".join([prefix, str(uid)])
Y
Yu Yang 已提交
275

Y
Yu Yang 已提交
276

F
fengjiayi 已提交
277 278 279
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
280 281 282

    Returns(list): list of OpProto

F
fengjiayi 已提交
283 284 285 286 287 288 289 290 291 292
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
293 294 295 296
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
313 314 315 316 317 318 319 320
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
321 322
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
323 324 325
        return self.op_proto_map[type]


Y
Yu Yang 已提交
326
class Operator(object):
327 328 329 330 331 332
    """
    Python Operator class. The operator represents the build in instructs in a
    Block. Users can use the build in instructs to describe their neural
    network.
    """

Y
Yu Yang 已提交
333 334
    def __init__(self,
                 block,
Y
Yu Yang 已提交
335
                 desc,
Y
Yu Yang 已提交
336 337 338 339
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
            block(Block): The block has the current operator
            desc(core.OpDesc): The protobuf description
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
            outputs(dict): The output dictionary. Has same format with inputs
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
364
        self.block = block
Y
Yu Yang 已提交
365
        self.desc = desc
T
typhoonzero 已提交
366 367 368 369
        # for clone a new operator
        self.inputs = inputs
        self.outputs = outputs
        self.attrs = attrs
F
fengjiayi 已提交
370 371 372 373 374
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
375
        self.desc.set_type(type)
F
fengjiayi 已提交
376
        proto = OpProtoHolder.instance().get_op_proto(type)
377

Y
Yang Yang(Tony) 已提交
378 379
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
380
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
381 382
                    return True
            return False
Q
QI JUN 已提交
383

Y
Yang Yang(Tony) 已提交
384 385 386 387 388 389 390
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
391 392 393 394
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
395 396
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
397 398 399
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
400 401 402 403
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
404
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
405 406
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
407

Y
Yu Yang 已提交
408
        if outputs is not None:
409 410 411 412 413 414 415 416 417 418 419 420
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
                raise ValueError(
                    "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
                    % (type, ", ".join(str(e) for e in need), ", ".join(
                        str(e) for e in given)))

F
fengjiayi 已提交
421
            for out_proto in proto.outputs:
422 423 424 425
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
426 427
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
428 429 430 431 432 433
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
434

Y
Yu Yang 已提交
435
        if attrs is not None:
436 437
            if not isinstance(attrs, dict):
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
438
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
439
                attr_name = attr.name
440
                if (not attr_name in attrs) or (attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
441
                    continue
Y
Yang Yang(Tony) 已提交
442
                if isinstance(attrs[attr_name], Block):
F
Update  
fengjiayi 已提交
443
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
T
typhoonzero 已提交
444 445 446 447
                elif isinstance(attrs[attr_name], core.BlockDesc) or \
                   isinstance(attrs[attr_name], core.ProgramDesc):
                    self.desc.set_serialized_attr(
                        attr_name, attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
448 449
                else:
                    self.desc.set_attr(attr_name, attrs[attr_name])
Y
Yu Yang 已提交
450

451
        self.desc.check_attrs()
Y
Yang Yang(Tony) 已提交
452
        no_kernel_op_set = {
Y
Yu Yang 已提交
453
            'feed', 'fetch', 'save', 'load', 'recurrent',
T
typhoonzero 已提交
454 455
            'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
            'recv'
Y
Yang Yang(Tony) 已提交
456
        }
457
        if type not in no_kernel_op_set:
Q
QI JUN 已提交
458
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
459
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
460

Y
Yang Yang(Tony) 已提交
461
    def to_string(self, throw_on_error):
462 463 464 465 466 467 468 469 470
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
471 472
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
473 474 475 476
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
477 478 479

    __repr__ = __str__

F
fengjiayi 已提交
480 481 482 483 484
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
485 486 487 488 489 490 491 492 493
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
494 495 496 497
        return self.desc.input(name)

    @property
    def input_names(self):
498 499 500 501 502
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
503 504 505
        return self.desc.input_names()

    def output(self, name):
506 507 508 509 510 511 512 513 514
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
515 516 517 518
        return self.desc.output(name)

    @property
    def output_names(self):
519 520 521 522 523
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
524 525
        return self.desc.output_names()

526 527
    @property
    def idx(self):
528 529 530 531 532 533
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
534 535 536 537 538 539
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
540
    def has_attr(self, name):
541 542 543 544 545 546 547 548
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
549 550 551
        return self.desc.has_attr(name)

    def attr_type(self, name):
552 553 554 555 556 557 558 559
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
560 561 562 563
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
564 565 566 567 568
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
569 570 571
        return self.desc.attr_names()

    def attr(self, name):
572 573 574 575 576 577 578 579 580
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
581
        return self.desc.attr(name)
Y
Yu Yang 已提交
582

F
fengjiayi 已提交
583
    def block_attr(self, name):
584 585 586 587 588 589 590 591
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
592
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
593 594


Y
Yu Yang 已提交
595 596
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
597
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
598
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
599
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
600
        self.program = program
T
typhoonzero 已提交
601
        self.removed_vars = dict()
Y
Yu Yang 已提交
602

603
    def __str__(self):
Y
Yang Yang(Tony) 已提交
604 605 606
        return self.to_string(True)

    def to_string(self, throw_on_error):
607 608
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
609
        return _debug_string_(proto, throw_on_error)
610 611 612

    __repr__ = __str__

Y
Yu Yang 已提交
613 614
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
615
        return self.desc.parent
Y
Yu Yang 已提交
616 617 618

    @property
    def idx(self):
Y
Yu Yang 已提交
619
        return self.desc.id
Y
Yu Yang 已提交
620

Q
Qiao Longfei 已提交
621
    def var(self, name):
Y
Yu Yang 已提交
622 623 624 625
        if not isinstance(name, basestring):
            raise TypeError()
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
626
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
627
        return v
Q
Qiao Longfei 已提交
628 629

    def all_parameters(self):
630 631 632 633 634
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
635

Y
Yu Yang 已提交
636
    def create_var(self, *args, **kwargs):
Q
Qiao Longfei 已提交
637
        var = Variable(self, *args, **kwargs)
638 639
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
640
        return var
Y
Yu Yang 已提交
641

Q
Qiao Longfei 已提交
642 643 644
    def has_var(self, name):
        return name in self.vars

Y
Yu Yang 已提交
645 646
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
647
        param = Parameter(global_block, *args, **kwargs)
648 649
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
650
        return param
Y
Yu Yang 已提交
651

Y
Yu Yang 已提交
652
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
653 654
        op_desc = self.desc.append_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
655 656 657
        self.ops.append(op)
        return op

T
typhoonzero 已提交
658 659 660 661 662 663 664 665
    def delete_ops(self, ops):
        # remove from cpp
        # FIXME(typhoonzero): remove only the first occuracy.
        try:
            start = list(self.ops).index(ops[0])
            end = list(self.ops).index(ops[-1])
        except Exception, e:
            raise e
T
typhoonzero 已提交
666
        self.desc.remove_op(start, end + 1)
T
wip  
typhoonzero 已提交
667

Y
Yu Yang 已提交
668
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
669 670
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
671 672 673
        self.ops.appendleft(op)
        return op

Q
Qiao Longfei 已提交
674 675 676 677 678 679 680
    def sync_with_cpp(self):
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

        # sync operators from cpp
681 682 683 684
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.appendleft(op)

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

718 719 720 721
    def copy_param_info_from(self, other):
        """
        Copy the information of parameters from other block
        Args:
722
            other(Block): other block
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
Y
Yu Yang 已提交
746
                clip_attr=p.clip_attr,
747 748 749
                name=v.name)
            self.vars[new_p.name] = new_p

Y
Yu Yang 已提交
750 751

class Program(object):
752 753
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
754 755
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
756
        self._seed = 0
Y
Yu Yang 已提交
757

758
    def __str__(self):
Y
Yang Yang(Tony) 已提交
759 760 761
        return self.to_string(True)

    def to_string(self, throw_on_error):
762 763
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
764
        return _debug_string_(proto, throw_on_error)
765

Y
Yu Yang 已提交
766 767 768 769 770
    def clone(self):
        p = Program()
        p.desc = core.ProgramDesc(self.desc)
        p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
        p.sync_with_cpp()
771
        p.copy_param_info_from(self)
Y
Yu Yang 已提交
772
        return p
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    t = t.op
                else:
                    raise ValueError(
                        "All targets of prune() can only be Variable or Operator."
                    )

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

794 795 796 797 798 799 800
    def inference_optimize(self):
        res = Program()
        res.desc = core.inference_optimize(self.desc)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

801 802 803 804
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
805
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
806 807
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
808

D
dzhwinter 已提交
809 810 811 812 813 814 815 816 817 818
    @property
    def random_seed(self):
        return self._seed

    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
819 820
    def __repr__(self):
        return str(self)
821

Y
Yu Yang 已提交
822 823 824
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
825 826 827
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
828 829 830
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
fengjiayi 已提交
831
    def append_backward(self, target, no_grad_set=None):
Q
Qiao Longfei 已提交
832 833 834
        """
        return map(param_name -> (grad_name, block_index, op_index))
        """
Q
Qiao Longfei 已提交
835
        assert isinstance(target, Variable)
F
fengjiayi 已提交
836 837
        if no_grad_set is None:
            no_grad_set = set()
Y
Yang Yang(Tony) 已提交
838 839 840 841 842 843 844 845
        try:
            param_to_grad_info = self.desc.append_backward(target.desc,
                                                           no_grad_set)
        except Exception as e:
            raise core.EnforceNotMet(
                str(e) + "\nCurrent protobuf is\n{0}".format(
                    self.to_string(False)))

Q
Qiao Longfei 已提交
846 847 848
        self.sync_with_cpp()
        return param_to_grad_info

F
update  
fengjiayi 已提交
849
    def create_block(self, parent_idx=None):
Y
Yu Yang 已提交
850
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
851 852 853
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
854 855 856 857 858 859 860
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
861 862 863 864 865 866
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

867 868
    def copy_param_info_from(self, other):
        """
869
        Copy the information of parameters from other program.
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

885 886 887 888 889
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
890

Y
Yu Yang 已提交
891 892 893 894 895 896 897 898 899 900 901
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
902 903 904

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
905 906 907 908
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

909 910
        self.regularizer = kwargs.get('regularizer', None)

Y
Yu Yang 已提交
911 912
        self.clip_attr = kwargs.get('clip_attr', None)

Y
Yu Yang 已提交
913

Y
Yu Yang 已提交
914
# program is a global instance.
Y
Yu Yang 已提交
915 916
_main_program_ = Program()
_startup_program_ = Program()
917

918

919
def default_startup_program():
Y
Yu Yang 已提交
920 921 922
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
923

Y
Yu Yang 已提交
924 925 926
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
927
    return _startup_program_
928

929

930
def default_main_program():
Y
Yu Yang 已提交
931 932
    """
    Get default main program. The main program is used for training or testing.
933

Y
Yu Yang 已提交
934 935 936
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
937
    return _main_program_
Y
Yu Yang 已提交
938 939 940 941 942


def switch_main_program(program):
    """
    Switch the main program to a new program.
943

Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
958
    Switch the startup program to a new program
Y
Yu Yang 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
975

Y
Yu Yang 已提交
976 977 978 979
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
980

Y
Yu Yang 已提交
981 982
    Args:
        main_program(Program): New main program inside `with` statement
983
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)