operator.h 12.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22
#include <unordered_map>
#include <vector>
D
dzhwinter 已提交
23 24
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
Q
Qiao Longfei 已提交
25

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
38 39 40 41

namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53 54

/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64 65 66 67
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
68
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
69 70
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
71

Q
Qiao Longfei 已提交
72
class OperatorBase;
73
class ExecutionContext;
74

Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
83 84
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
85

Q
Qiao Longfei 已提交
86 87
  virtual ~OperatorBase() {}

88
  /// Executor will call this interface function to Run an op.
89 90
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
91

T
typhoonzero 已提交
92 93 94
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

95 96 97
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
98

99 100
  virtual bool SupportGPU() const { return false; }

101 102
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
103
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
104 105 106 107 108 109 110
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
111

Y
Yu Yang 已提交
112 113
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
114

115
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
116
  //! Get a input with argument's name described in `op_proto`
117
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
118
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
119
  const std::vector<std::string>& Inputs(const std::string& name) const;
120
  //! Get all inputs variable names
Q
qijun 已提交
121 122
  std::vector<std::string> InputVars() const;

123
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
124
  //! Get a output with argument's name described in `op_proto`
125
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
126 127
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
128
  const std::vector<std::string>& Outputs(const std::string& name) const;
129
  //! Get all outputs variable names
Y
Yu Yang 已提交
130
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
131

Q
qiaolongfei 已提交
132
 protected:
Q
Qiao Longfei 已提交
133
  std::string type_;
D
dongzhihong 已提交
134
  // NOTE: in case of OpGrad, inputs_ contains:
135
  // I (Inputs)
D
dongzhihong 已提交
136 137
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
138
  VariableNameMap inputs_;
Y
Yu Yang 已提交
139

D
dongzhihong 已提交
140 141
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
142
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
143
  AttributeMap attrs_;
144 145 146 147

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
148 149
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
150 151
};

152
class ExecutionContext {
Y
Yan Chunwei 已提交
153
 public:
154 155 156
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
157

Q
qiaolongfei 已提交
158 159 160 161
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
162
  template <typename T>
Y
Yu Yang 已提交
163 164
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
165 166
  }

167
  bool HasInput(const std::string& name) const;
168

169
  bool HasOutput(const std::string& name) const;
170

Y
Yu Yang 已提交
171
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
172
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
173 174
  }

Y
Yu Yang 已提交
175
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
176
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
177 178
  }

179
  const Variable* InputVar(const std::string& name) const {
180
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
181
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
182 183
  }

184
  Variable* OutputVar(const std::string& name) const {
185
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
186
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
187 188
  }

189 190
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
191 192
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
193
    res.reserve(names.size());
194 195
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
196 197
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
198
                   });
Y
Yan Chunwei 已提交
199 200 201
    return res;
  }

202
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
203
    auto names = op_.Outputs(name);
204
    std::vector<Variable*> res;
205
    res.reserve(names.size());
206 207
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
208 209
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
210
                   });
Y
Yan Chunwei 已提交
211 212 213
    return res;
  }

214 215
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
216
    auto* var = InputVar(name);
217
    return var == nullptr ? nullptr : &var->Get<T>();
218 219 220 221
  }

  template <typename T>
  T* Output(const std::string& name) const {
222
    auto var = OutputVar(name);
223
    return var == nullptr ? nullptr : var->GetMutable<T>();
224 225 226 227 228 229 230 231
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
232
                   [&](const std::string& sub_name) -> const T* {
233
                     auto var = scope_.FindVar(sub_name);
234
                     return var == nullptr ? nullptr : &var->Get<T>();
235 236 237 238 239
                   });
    return res;
  }

  template <typename T>
240
  std::vector<T*> MultiOutput(const std::string& name) const {
241
    auto names = op_.Outputs(name);
242
    std::vector<T*> res;
243 244
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
245
                   [&](const std::string& sub_name) -> T* {
246
                     auto var = scope_.FindVar(sub_name);
247
                     return var == nullptr ? nullptr : var->GetMutable<T>();
248 249 250 251
                   });
    return res;
  }

252
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
253

Q
QI JUN 已提交
254 255 256 257 258
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

259
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
260
    return device_context_;
Q
qijun 已提交
261
  }
Q
qijun 已提交
262

Q
QI JUN 已提交
263 264 265 266 267 268 269 270
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
271
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
272 273 274
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
275

D
dzhwinter 已提交
276
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
277 278 279 280
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

281
 private:
282 283
  const OperatorBase& op_;
  const Scope& scope_;
284
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
285 286
};

287 288 289 290 291 292 293 294 295 296 297 298 299 300
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
301
class OpKernelBase {
Q
qijun 已提交
302
 public:
Q
qijun 已提交
303
  /**
304
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
305 306
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
307
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
308 309
   */

310
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
311

Y
Yu Yang 已提交
312 313 314 315 316 317 318
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
319 320
};

Y
Yu Yang 已提交
321 322
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
323
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
324
  using OpKernelMap =
Y
yuyang18 已提交
325
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
326

Y
Yu Yang 已提交
327 328
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
329 330
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
331 332 333 334
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
335
  }
Y
Yan Chunwei 已提交
336

337
  bool SupportGPU() const override {
Y
Yu Yang 已提交
338 339 340 341 342
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
343 344
  }

345 346 347
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
348

Q
qiaolongfei 已提交
349
 protected:
350 351 352 353
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
354 355

 private:
356
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
357
  // same.
358
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
359
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
374 375
};

Y
Yu Yang 已提交
376 377
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
378 379
}  // namespace framework
}  // namespace paddle