blas_impl.cu.h 6.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/cublas.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct CUBlas;

template <>
struct CUBlas<float> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasSgemm(args...));
  }
};

template <>
struct CUBlas<double> {
  template <typename... ARGS>
  static void GEMM(ARGS... args) {
    PADDLE_ENFORCE(platform::dynload::cublasDgemm(args...));
  }
};

template <>
struct CUBlas<platform::float16> {
Y
Yu Yang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58
  using float16 = platform::float16;

  static void GEMM(cublasHandle_t handle, cublasOperation_t transa,
                   cublasOperation_t transb, int m, int n, int k,
                   const float16 *alpha, const float16 *A, int lda,
                   const float16 *B, int ldb, const float16 *beta, float16 *C,
                   int ldc) {
    PADDLE_ENFORCE(
        platform::dynload::cublasHgemm(handle, transa, transb, m, n, k,
                                       reinterpret_cast<const __half *>(alpha),
                                       reinterpret_cast<const __half *>(A), lda,
                                       reinterpret_cast<const __half *>(B), ldb,
                                       reinterpret_cast<const __half *>(beta),
                                       reinterpret_cast<__half *>(C), ldc));
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  }
};

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMM(const CBLAS_TRANSPOSE transA,
                                             const CBLAS_TRANSPOSE transB,
                                             const int M, const int N,
                                             const int K, const T alpha,
                                             const T *A, const T *B,
                                             const T beta, T *C) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, N);
}

template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
    const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M,
    const int N, const int K, const platform::float16 alpha,
    const platform::float16 *A, const platform::float16 *B,
    const platform::float16 beta, platform::float16 *C) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;

  // TODO(kexinzhao): add processing code for compute capability < 53 case
  PADDLE_ENFORCE_GE(context_.GetComputeCapability(), 53,
                    "cublas fp16 gemm requires GPU compute capability >= 53");

#if CUDA_VERSION >= 8000
  float h_alpha = static_cast<float>(alpha);
  float h_beta = static_cast<float>(beta);

  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
  if (context_.GetComputeCapability() >= 70) {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_TENSOR_OP_MATH));
    algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
  } else {
    PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
        context_.cublas_handle(), CUBLAS_DEFAULT_MATH));
  }
#endif  // CUDA_VERSION >= 9000

  // cublasHgemm does true FP16 computation which is slow for non-Volta
  // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
  // input/output in fp16, computation in fp32, which can also be accelerated
  // using tensor cores in volta GPUs.
  PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
      context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
      CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
      CUDA_R_32F, algo));
#else
  // CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
  const half h_alpha = static_cast<const half>(alpha);
  const half h_beta = static_cast<const half>(beta);
  const half *h_A = reinterpret_cast<const half *>(A);
  const half *h_B = reinterpret_cast<const half *>(B);
  half *h_C = reinterpret_cast<half *>(C);

  CUBlas<platform::float16>(context_.cublas_handle(), cuTransB, cuTransA, N, M,
                            K, &h_alpha, h_B, ldb, h_A, lda, &h_beta, h_C, N);
#endif  // CUDA_VERSION >= 8000
}

template <>
template <typename T>
void Blas<platform::CUDADeviceContext>::GEMM(
    const bool transA, const bool transB, const int M, const int N, const int K,
    const T alpha, const T *A, const int lda, const T *B, const int ldb,
    const T beta, T *C, const int ldc) const {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
                  B, ldb, A, lda, &beta, C, ldc);
}

}  // namespace math
}  // namespace operators
}  // namespace paddle