pybind.cc 10.1 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
21
#include "paddle/framework/tensor_py.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
27 28 29 30
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

31 32
namespace py = pybind11;

Y
Yu Yang 已提交
33
USE_OP(add_two);
F
fengjiayi 已提交
34 35
USE_CPU_ONLY_OP(onehot_cross_entropy);
USE_OP(sgd);
Q
qijun 已提交
36
USE_OP(mul);
L
liaogang 已提交
37
USE_OP(mean);
Q
qijun 已提交
38 39 40
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
41
USE_OP(fill_zeros_like);
F
Fix bug  
fengjiayi 已提交
42
USE_OP_ITSELF(recurrent_op);
43
USE_OP(gaussian_random);
Y
Yu Yang 已提交
44
USE_OP(uniform_random);
Z
zchen0211 已提交
45
USE_CPU_ONLY_OP(gather);
46

47 48
namespace paddle {
namespace framework {
D
dongzhihong 已提交
49 50 51

using Tensor = framework::Tensor;

Y
Yu Yang 已提交
52
template <typename ClassType>
53
void ExposeOperator(ClassType &m) {
Y
Yu Yang 已提交
54 55
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
Q
Qiao Longfei 已提交
56
      .def("type",
57
           [](const typename ClassType::type &op) -> std::string {
Q
qiaolongfei 已提交
58
             return op.Type();
Q
Qiao Longfei 已提交
59
           })
Y
Yu Yang 已提交
60
      .def("outputs",
Y
Yu Yang 已提交
61
           [](const typename ClassType::type &op)
Y
Yu Yang 已提交
62
               -> std::map<std::string, std::vector<std::string>> {
Q
qiaolongfei 已提交
63
                 return op.Outputs();
64
               })
Y
Yu Yang 已提交
65
      .def("inputs",
Q
qiaolongfei 已提交
66
           [](const typename ClassType::type &op) { return op.Inputs(); })
Y
Yu Yang 已提交
67
      .def("__str__", &ClassType::type::DebugString)
Y
Yu Yang 已提交
68 69 70 71 72
      .def("no_intermediate_outputs",
           [](const typename ClassType::type &op) {
             return op.OutputVars(false);
           })
      .def("support_gpu", &ClassType::type::SupportGPU);
Y
Yu Yang 已提交
73
}
Y
Yu Yang 已提交
74

75 76 77 78 79
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
80 81 82 83 84 85 86 87
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

88
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
89
  py::module m("core", "C++ core of PaddlePaddle");
90

91 92 93
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
94
      .def("get_dims",
95
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
96
      .def("set_dims",
97 98
           [](Tensor &self, const std::vector<int> &dim) {
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
99 100
           })
      .def("alloc_float",
Y
Yu Yang 已提交
101
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
102
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
103
           })
Q
qijun 已提交
104
      .def("alloc_float",
Y
Yu Yang 已提交
105
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
106
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
107 108
           })
      .def("alloc_int",
Y
Yu Yang 已提交
109
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
110
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
111
           })
Q
qijun 已提交
112
      .def("alloc_int",
Y
Yu Yang 已提交
113
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
114
             self.mutable_data<int>(place);
Q
qijun 已提交
115
           })
Y
Yu Yang 已提交
116 117
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
118
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
119 120
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
121
#endif
122
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
123
      .def("set_float_element",
124
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
125
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
126 127
             self.data<float>()[offset] = f;
           })
128
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
129
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
130 131
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
132

133
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
134 135 136

All parameter, weight, gradient are variables in Paddle.
)DOC")
137
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
138
      .def("set_int",
139 140
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
141
      .def("get_tensor",
142
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
143 144
           py::return_value_policy::reference)
      .def("get_net",
D
dongzhihong 已提交
145 146
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
147
           },
Y
Yu Yang 已提交
148
           py::return_value_policy::reference);
149

150
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
151
      .def("new_var",
152
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
153 154
             return self.NewVar(name);
           },
155
           py::return_value_policy::reference)
156
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
157
      .def(py::init<>())
158
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
159
           py::return_value_policy::reference)
160
      .def("drop_kids", &Scope::DropKids);
161

Y
Yu Yang 已提交
162 163
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
164
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
F
WIP  
fengjiayi 已提交
165
    auto &op_info_map = OpRegistry::op_info_map();
Y
Yu Yang 已提交
166
    std::vector<py::bytes> ret_values;
F
WIP  
fengjiayi 已提交
167 168
    for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) {
      const OpProto *proto = it->second.proto_;
F
fengjiayi 已提交
169 170 171
      if (proto == nullptr) {
        continue;
      }
F
WIP  
fengjiayi 已提交
172
      PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized");
Y
Yu Yang 已提交
173
      std::string str;
F
WIP  
fengjiayi 已提交
174
      PADDLE_ENFORCE(proto->SerializeToString(&str),
Y
Yu Yang 已提交
175
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
176
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
177 178 179
    }
    return ret_values;
  });
180 181 182
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
183 184
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
185
  // clang-format off
Y
Yu Yang 已提交
186
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
187 188
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
189
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
190 191 192 193 194
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
195
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
196
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
197
#else
Q
qijun 已提交
198
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
199
#endif
Q
qijun 已提交
200
                  });
Q
qijun 已提交
201
  // clang-format on
Q
qijun 已提交
202

203 204 205
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
206

207 208 209
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
210

211
  py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
Y
Yu Yang 已提交
212
      m, "Operator");
Y
Yu Yang 已提交
213

Y
Yu Yang 已提交
214
  operator_base.def_static("create", [](py::bytes protobin) {
215
    OpDesc desc;
Y
Yu Yang 已提交
216 217 218 219 220
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
221
    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
222
  });
Q
Qiao Longfei 已提交
223 224

  operator_base.def("backward",
Y
Yu Yang 已提交
225
                    [](const OperatorBase &forwardOp,
226
                       const std::unordered_set<std::string> &no_grad_vars) {
Y
Yu Yang 已提交
227
                      return Backward(forwardOp, no_grad_vars);
Q
Qiao Longfei 已提交
228 229
                    });

Y
Yu Yang 已提交
230 231
  ExposeOperator(operator_base);

D
dongzhihong 已提交
232
  py::class_<operators::NetOp, std::shared_ptr<operators::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
233 234

  net.def_static("create",
D
dongzhihong 已提交
235 236
                 []() -> std::shared_ptr<operators::NetOp> {
                   auto retv = std::make_shared<operators::NetOp>();
Q
qiaolongfei 已提交
237
                   retv->SetType("plain_net");
Y
Yu Yang 已提交
238 239
                   return retv;
                 })
D
dongzhihong 已提交
240 241 242 243 244 245
      .def("add_op", &operators::NetOp::AddOp)
      .def("add_op",
           [](operators::NetOp &self,
              const std::shared_ptr<operators::NetOp> &net) -> void {
             self.AddOp(std::static_pointer_cast<OperatorBase>(net));
           })
Y
Yan Chunwei 已提交
246 247 248 249 250
      .def("add_op",
           [](operators::NetOp &self,
              const std::shared_ptr<operators::RecurrentOp> &rnn) -> void {
             self.AddOp(std::static_pointer_cast<OperatorBase>(rnn));
           })
D
dongzhihong 已提交
251 252 253 254
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
255

Y
Yu Yang 已提交
256
  ExposeOperator(net);
Y
Yu Yang 已提交
257

Y
Yan Chunwei 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  // recurrent_op
  py::class_<operators::RecurrentOp, std::shared_ptr<operators::RecurrentOp>>
      rnn(m, "RecurrentOp");

  rnn.def_static(
         "create",
         [](py::bytes protobin) -> std::shared_ptr<operators::RecurrentOp> {
           OpDesc desc;
           PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                          "Cannot parse user input to OpDesc");
           PADDLE_ENFORCE(desc.IsInitialized(),
                          "User OpDesc is not initialized, reason %s",
                          desc.InitializationErrorString());
           auto rnn_op = OpRegistry::CreateOp(desc);
           return std::dynamic_pointer_cast<operators::RecurrentOp>(rnn_op);
         })
      .def("set_stepnet",
           [](operators::RecurrentOp &self,
              const std::shared_ptr<operators::NetOp> &net) -> void {
             self.set_stepnet(net);
           });
  ExposeOperator(rnn);

281 282
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
283 284
  m.def("is_compile_gpu", IsCompileGPU);

285
  return m.ptr();
L
Luo Tao 已提交
286
}
287 288
}  // namespace framework
}  // namespace paddle