manipulation.cu 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/pten/api/ext/dispatch.h"
C
Chen Weihang 已提交
16
#include "paddle/pten/infermeta/unary.h"
17 18
#include "paddle/pten/kernels/gpu/manipulation.h"
#include "paddle/pten/kernels/gpu/utils.h"
C
Chen Weihang 已提交
19 20
#include "paddle/pten/kernels/hybird/cuda/cast_kernel_impl.h"
#include "paddle/pten/kernels/hybird/general/manipulation.h"
21 22 23

namespace pten {

24
void Reshape(const GPUContext& dev_ctx,
25 26 27 28
             const DenseTensor& x,
             const ScalarArray& shape,
             DenseTensor* out) {
  auto out_meta = InferMetaFromVecValue(x.meta(), shape.GetData());
29
  if (x.data() == out->data() && x.numel() == out->numel()) {
30 31 32 33 34 35
    out->Resize(out_meta.dims);
    return;
  }
  pten::Copy(dev_ctx, x, false, out);
  out->Resize(out_meta.dims);
  out->ResetLoD(x.lod());
36 37
}

38
void ReshapeWithXShape(const GPUContext& dev_ctx,
39 40 41 42
                       const DenseTensor& x,
                       const ScalarArray& shape,
                       DenseTensor* xshape,
                       DenseTensor* out) {
43
  general::SetXShape(x, xshape);
44
  Reshape(dev_ctx, x, shape, out);
45 46 47
}

template <typename T>
48
void Cast(const GPUContext& dev_ctx,
49 50 51 52 53
          const DenseTensor& x,
          DataType out_dtype,
          DataType in_dtype,
          DenseTensor* out) {
  PD_VISIT_ALL_TYPES(out_dtype, "CastKernelImpl", ([&] {
54
                       detail::CastCUDAKernelImpl<T, data_t>(dev_ctx, x, out);
55
                     }));
56 57 58 59 60
}

}  // namespace pten

using float16 = paddle::platform::float16;
61

62
#define PTEN_REGISTER_CAST_CUDA_BASE_TYPE(op_name, ...) \
63
  PT_REGISTER_KERNEL(cast,                              \
64
                     GPU,                               \
65
                     ALL_LAYOUT,                        \
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                     pten::Cast,                        \
                     float,                             \
                     double,                            \
                     int,                               \
                     int64_t,                           \
                     int16_t,                           \
                     bool,                              \
                     uint8_t,                           \
                     paddle::platform::float16,         \
                     paddle::platform::complex<float>,  \
                     paddle::platform::complex<double>, \
                     ##__VA_ARGS__) {                   \
    kernel->OutputAt(0).SetDataType(                    \
        paddle::experimental::DataType::UNDEFINED);     \
  }

#if !defined(PADDLE_WITH_HIP)
PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast, paddle::platform::bfloat16)
#else
PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast)
#endif
87

88
PT_REGISTER_NO_TEMPLATE_KERNEL(reshape, GPU, ANY, pten::Reshape, ALL_DTYPE) {}
89
PT_REGISTER_NO_TEMPLATE_KERNEL(
90
    reshape_with_xshape, GPU, ANY, pten::ReshapeWithXShape, ALL_DTYPE) {}