test_dist_fleet_ps4.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSPassWithBow(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = fluid.layers.reduce_sum(cond)
            acc = fluid.layers.elementwise_div(
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'),
                name="simnet_acc")
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = fluid.layers.elementwise_sub(
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt,
                    shape=[-1, 1],
                    value=margin,
                    dtype='float32'),
                cos_q_pt)
            loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
            loss_op3 = fluid.layers.elementwise_max(
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
                loss_op2)
            avg_cost = fluid.layers.mean(loss_op3)
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
        q = fluid.layers.data(
            name="query_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        q_emb = fluid.layers.embedding(
            input=q,
            is_distributed=is_distributed,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr),
            is_sparse=is_sparse)
        q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = fluid.layers.softsign(q_sum)
        # fc layer after conv
        q_fc = fluid.layers.fc(
            input=q_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
                learning_rate=base_lr))
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
        pt = fluid.layers.data(
            name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
S
fix UT  
seiriosPlus 已提交
97
        pt_emb = fluid.contrib.layers.sparse_embedding(
98 99 100 101 102
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
S
fix UT  
seiriosPlus 已提交
103
                learning_rate=emb_lr))
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = fluid.layers.softsign(pt_sum)
        # fc layer
        pt_fc = fluid.layers.fc(
            input=pt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        # nt
        nt = fluid.layers.data(
            name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        nt_emb = fluid.layers.embedding(
            input=nt,
            is_distributed=is_distributed,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr),
            is_sparse=is_sparse)
        nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = fluid.layers.softsign(nt_sum)
        # fc layer
        nt_fc = fluid.layers.fc(
            input=nt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
        cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
        endpoints = [
            "127.0.0.1:36004", "127.0.0.1:36005", "127.0.0.1:36006",
            "127.0.0.1:36007"
        ]

        role = role_maker.UserDefinedRoleMaker(
            current_id=0,
            role=role_maker.Role.SERVER,
            worker_num=2,
            server_endpoints=endpoints)

        fleet.init(role)
        loss, acc, _ = self.net()
S
add UT  
seiriosPlus 已提交
165
        optimizer = fluid.optimizer.Adam(base_lr)
166 167 168 169 170 171 172
        strategy = StrategyFactory.create_async_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(loss)


if __name__ == '__main__':
    unittest.main()