fused_gate_attention_op.cu 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fused_gate_attention.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct SigmoidMultiplyFunctor {
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // sigmoid(x) = 1 / (1 + exp(-x))
  // out = sigmoid(x) * y
  inline HOSTDEVICE T operator()(T x, T y) const {
    MPType x_mp = static_cast<MPType>(x);
    T sigmoid_out = static_cast<T>(one / (one + exp(-x_mp)));
    return sigmoid_out * y;
  }
};

template <typename T>
struct SigmoidMultiplyGradFunctor {
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
  MPType one = static_cast<MPType>(1.0f);

  // Gradient of Multiply:
  //  dx = dout * y
  //  dy = dout * x
  // Gradient of Sigmoid: dx = dout * out * (1 - out)
50 51
  inline HOSTDEVICE phi::Array<T, 2> operator()(const T dout,
                                                const T x,
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                                                T y) const {
    MPType x_mp = static_cast<MPType>(x);
    T sigmoid_out = static_cast<T>(one / (one + exp(-x_mp)));
    T d_sigmoid_out = dout * y;
    phi::Array<T, 2> outs;
    outs[0] = d_sigmoid_out * sigmoid_out *
              (static_cast<T>(1.0f) - sigmoid_out);  // dx
    outs[1] = dout * sigmoid_out;                    // dy
    return outs;
  }
};

template <typename T>
void ComputeMergedQKVMatmulForward(const framework::ExecutionContext &ctx,
                                   const GateAttentionConfig<T> &config,
67 68
                                   const Tensor *query,
                                   Tensor *qkv_out) {
69
  // query: shape=[batch_size, seq_len_m, seq_len_r, qkv_dim]
70 71
  // qkv_weight: shape=[3, num_heads, head_dim, qkv_dim]
  // qkv_out: shape=[batch_size, seq_len_m, seq_len_r, 3, num_heads, head_dim]
72 73 74 75
  auto *qkv_weight = ctx.Input<Tensor>("QKVWeight");

  // qkv_out = GEMM(query, qkv_weight^T)
  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
76
  int n = 3 * config.num_heads * config.head_dim;
77 78 79 80 81 82 83
  int k = config.q_dim;
  auto qkv_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, true, m, n, k, false);
  qkv_compute.ComputeForward(qkv_weight, query, nullptr, qkv_out, nullptr);
}

template <typename T>
84 85 86 87
void ComputeMergedQKVMatmulBackward(const framework::ExecutionContext &ctx,
                                    const GateAttentionGradConfig<T> &config,
                                    const Tensor *query,
                                    const Tensor *qkv_out_grad,
88 89
                                    Tensor *query_grad,
                                    bool use_addto) {
90 91 92
  auto *qkv_weight = ctx.Input<Tensor>("QKVWeight");
  auto *qkv_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("QKVWeight"));
93 94
  auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
  dev_ctx.Alloc<T>(qkv_weight_grad, qkv_weight_grad->numel() * sizeof(T));
95 96 97

  // Gradient of GEMM(query, qkv_weight)
  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
98
  int n = 3 * config.num_heads * config.head_dim;
99 100 101
  int k = config.q_dim;
  auto qkv_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, true, m, n, k, false);
102 103 104 105 106 107 108
  qkv_compute.ComputeBackward(query,
                              qkv_weight,
                              qkv_out_grad,
                              query_grad,
                              qkv_weight_grad,
                              nullptr,
                              use_addto);
109 110 111 112 113
}

template <typename T>
void ComputeSeparatedQKVMatmulForward(const framework::ExecutionContext &ctx,
                                      const GateAttentionConfig<T> &config,
114 115 116 117
                                      const Tensor *query,
                                      const Tensor *key,
                                      Tensor *query_out,
                                      Tensor *key_out,
118 119 120 121 122 123 124
                                      Tensor *value_out) {
  auto *query_weight = ctx.Input<Tensor>("QueryWeight");
  auto *key_weight = ctx.Input<Tensor>("KeyWeight");
  auto *value_weight = ctx.Input<Tensor>("ValueWeight");

  // query_out = GEMM(query, query_weight)
  // query: shape=[batch_size, seq_len_m, seq_len_r, q_dim]
125 126
  // query_weight: shape=[q_dim, num_heads, head_dim]
  // query_out: shape=[batch_size, seq_len_m, seq_len_r, num_heads, head_dim]
127
  int q_m = config.batch_size * config.seq_len_m * config.seq_len_r;
128
  int q_n = config.num_heads * config.head_dim;
129
  int q_k = config.q_dim;
130 131
  auto q_compute = AttnMatMul<T>(
      ctx.cuda_device_context(), false, false, q_m, q_n, q_k, false);
132 133 134 135
  q_compute.ComputeForward(query_weight, query, nullptr, query_out, nullptr);

  // k_out = GEMM(key, key_weight)
  // key: shape=[batch_size, seq_len_m, m_size, kv_dim]
136 137
  // key_weight: shape=[kv_dim, num_heads, head_dim]
  // key_out: shape=[batch_size, seq_len_m, m_size, num_heads, head_dim]
138
  int kv_m = config.batch_size * config.seq_len_m * config.m_size;
139
  int kv_n = config.num_heads * config.head_dim;
140
  int kv_k = config.kv_dim;
141 142
  auto kv_compute = AttnMatMul<T>(
      ctx.cuda_device_context(), false, false, kv_m, kv_n, kv_k, false);
143 144 145 146 147 148 149
  kv_compute.ComputeForward(key_weight, key, nullptr, key_out, nullptr);

  // value_out = GEMM(value, value_weight)
  kv_compute.ComputeForward(value_weight, key, nullptr, value_out, nullptr);
}

template <typename T>
150 151
void ComputeSeparatedQKVMatmulBackward(const framework::ExecutionContext &ctx,
                                       const GateAttentionGradConfig<T> &config,
152 153
                                       const Tensor *query,
                                       const Tensor *key,
154 155 156
                                       const Tensor *query_out_grad,
                                       const Tensor *key_out_grad,
                                       const Tensor *value_out_grad,
157 158
                                       Tensor *query_grad,
                                       Tensor *key_grad,
159
                                       bool use_addto) {
160 161 162 163
  // Gradient of GEMM(key, k_weight)
  const auto *key_weight = ctx.Input<Tensor>("KeyWeight");
  auto *key_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("KeyWeight"));
164 165
  auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
  dev_ctx.Alloc<T>(key_weight_grad, key_weight_grad->numel() * sizeof(T));
166 167

  int kv_m = config.batch_size * config.seq_len_m * config.m_size;
168
  int kv_n = config.num_heads * config.head_dim;
169
  int kv_k = config.kv_dim;
170 171 172 173
  auto kv_compute = AttnMatMul<T>(
      ctx.cuda_device_context(), false, false, kv_m, kv_n, kv_k, false);
  kv_compute.ComputeBackward(
      key, key_weight, key_out_grad, key_grad, key_weight_grad, nullptr, false);
174 175 176 177 178

  // Gradient of GEMM(value, v_weight)
  auto *value_weight = ctx.Input<Tensor>("ValueWeight");
  auto *value_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("ValueWeight"));
179
  dev_ctx.Alloc<T>(value_weight_grad, value_weight_grad->numel() * sizeof(T));
180

181 182 183 184 185 186 187
  kv_compute.ComputeBackward(key,
                             value_weight,
                             value_out_grad,
                             key_grad,
                             value_weight_grad,
                             nullptr,
                             true);
188 189 190 191 192

  // Gradient of GEMM(query, query_weight)
  const auto *query_weight = ctx.Input<Tensor>("QueryWeight");
  auto *query_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("QueryWeight"));
193
  dev_ctx.Alloc<T>(query_weight_grad, query_weight_grad->numel() * sizeof(T));
194 195

  int q_m = config.batch_size * config.seq_len_m * config.seq_len_r;
196
  int q_n = config.num_heads * config.head_dim;
197
  int q_k = config.q_dim;
198 199 200 201 202 203 204 205 206
  auto q_compute = AttnMatMul<T>(
      ctx.cuda_device_context(), false, false, q_m, q_n, q_k, false);
  q_compute.ComputeBackward(query,
                            query_weight,
                            query_out_grad,
                            query_grad,
                            query_weight_grad,
                            nullptr,
                            use_addto);
207 208 209
}

template <typename T>
210 211
void ComputeGatingLinearForward(const framework::ExecutionContext &ctx,
                                const GateAttentionConfig<T> &config,
212 213
                                const Tensor *query,
                                const Tensor *fmha_out,
214
                                Tensor *gate_out) {
215 216 217 218 219 220 221 222
  auto *gate_weight = ctx.Input<Tensor>("GateWeight");
  auto *gate_bias = ctx.Input<Tensor>("GateBias");

  // The first gate_bias_out stores the result of the multiplication,
  // and the second gate_bias_out stores the result of the multiplication +
  // bias.
  //   gate_out = GEMM(query, gate_weight) + gate_bias
  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
223
  int n = config.num_heads * config.head_dim;
224 225 226
  int k = config.q_dim;
  auto gate_attn_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, false, m, n, k, true);
227 228
  gate_attn_compute.ComputeForward(
      gate_weight, query, gate_bias, gate_out, gate_out);
229 230 231 232

  // gate_out = sigmoid(gate_out) * fmha_out
  std::vector<const Tensor *> ins = {gate_out, fmha_out};
  std::vector<Tensor *> outs = {gate_out};
233 234
  phi::funcs::ElementwiseKernel<T>(
      ctx.cuda_device_context(), ins, &outs, SigmoidMultiplyFunctor<T>());
235 236 237
}

template <typename T>
238 239
void ComputeGatingLinearBackward(const framework::ExecutionContext &ctx,
                                 const GateAttentionGradConfig<T> &config,
240 241
                                 const Tensor *query,
                                 const Tensor *fmha_out,
242
                                 const Tensor *gate_out_grad,
243 244
                                 Tensor *query_grad,
                                 Tensor *fmha_out_grad) {
245 246
  const auto *gate_weight = ctx.Input<Tensor>("GateWeight");
  const auto *gate_bias = ctx.Input<Tensor>("GateBias");
247
  auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
248 249 250
  // Re-compute gate_bias_out
  Tensor gate_bias_out;
  gate_bias_out.Resize(config.gate_out_dims);
251
  dev_ctx.Alloc<T>(&gate_bias_out, gate_bias_out.numel() * sizeof(T));
252 253

  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
254
  int n = config.num_heads * config.head_dim;
255 256 257
  int k = config.q_dim;
  auto gate_attn_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, false, m, n, k, true);
258 259
  gate_attn_compute.ComputeForward(
      gate_weight, query, gate_bias, &gate_bias_out, &gate_bias_out);
260 261 262 263 264 265 266 267 268 269 270 271

  // Gradient of sigmoid(gate_bias_out) * fmha_out
  // Compute inplace and save gate_bias_out_grad to gate_bias_out.
  std::vector<const Tensor *> ins = {gate_out_grad, &gate_bias_out, fmha_out};
  std::vector<Tensor *> outs = {&gate_bias_out, fmha_out_grad};
  phi::funcs::ElementwiseKernel<T, SigmoidMultiplyGradFunctor<T>, 2>(
      ctx.cuda_device_context(), ins, &outs, SigmoidMultiplyGradFunctor<T>());

  // Gradient of GEMM(query, gate_weight) + gate_bias
  auto *gate_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("GateWeight"));
  auto *gate_bias_grad = ctx.Output<Tensor>(framework::GradVarName("GateBias"));
272 273
  dev_ctx.Alloc<T>(gate_weight_grad, gate_weight_grad->numel() * sizeof(T));
  dev_ctx.Alloc<T>(gate_bias_grad, gate_bias_grad->numel() * sizeof(T));
274

275 276 277 278 279
  gate_attn_compute.ComputeBackward(query,
                                    gate_weight,
                                    &gate_bias_out,
                                    query_grad,
                                    gate_weight_grad,
280 281 282 283
                                    gate_bias_grad);
}

template <typename T>
284 285
void ComputeOutputLinearForward(const framework::ExecutionContext &ctx,
                                const GateAttentionConfig<T> &config,
286 287
                                const Tensor *fmha_or_gate_out,
                                Tensor *out) {
288 289 290 291 292 293
  const auto *out_linear_weight = ctx.Input<Tensor>("OutLinearWeight");
  const auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");

  // out = GEMM(fmha_or_gate_out, out_linear_weight) + out_linear_bias
  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
  int n = config.q_dim;
294
  int k = config.num_heads * config.head_dim;
295 296
  auto out_linear_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, false, m, n, k, true);
297 298
  out_linear_compute.ComputeForward(
      out_linear_weight, fmha_or_gate_out, out_linear_bias, out, out);
299 300 301
}

template <typename T>
302 303
void ComputeOutputLinearBackward(const framework::ExecutionContext &ctx,
                                 const GateAttentionGradConfig<T> &config,
304 305
                                 const Tensor *input,
                                 Tensor *input_grad) {
306
  auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
307 308 309 310 311 312 313 314
  const auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
  const auto *out_linear_weight = ctx.Input<Tensor>("OutLinearWeight");

  auto *out_linear_weight_grad =
      ctx.Output<Tensor>(framework::GradVarName("OutLinearWeight"));
  auto *out_linear_bias_grad =
      ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));

315 316 317 318
  dev_ctx.Alloc<T>(out_linear_weight_grad,
                   out_linear_weight_grad->numel() * sizeof(T));
  dev_ctx.Alloc<T>(out_linear_bias_grad,
                   out_linear_bias_grad->numel() * sizeof(T));
319

320 321
  int m = config.batch_size * config.seq_len_m * config.seq_len_r;
  int n = config.q_dim;
322
  int k = config.num_heads * config.head_dim;
323 324
  auto out_linear_compute =
      AttnMatMul<T>(ctx.cuda_device_context(), false, false, m, n, k, true);
325 326 327 328 329
  out_linear_compute.ComputeBackward(input,
                                     out_linear_weight,
                                     out_grad,
                                     input_grad,
                                     out_linear_weight_grad,
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
                                     out_linear_bias_grad);
}

template <typename T>
class FusedGateAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *query = ctx.Input<Tensor>("Query");
    const auto *key = ctx.Input<Tensor>("Key");
    const auto *query_weight = ctx.Input<Tensor>("QueryWeight");
    const auto *qkv_weight = ctx.Input<Tensor>("QKVWeight");

    const auto *src_mask = ctx.Input<Tensor>("SrcMask");
    const auto *nonbatched_bias = ctx.Input<Tensor>("NonbatchedBias");

    auto *q_transpose_out = ctx.Output<Tensor>("QueryTransposeOut");
    auto *k_transpose_out = ctx.Output<Tensor>("KeyTransposeOut");
    auto *v_transpose_out = ctx.Output<Tensor>("ValueTransposeOut");
    auto *qkv_transpose_out = ctx.Output<Tensor>("QKVTransposeOut");

    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");
352 353
    auto *gate_out = ctx.Output<Tensor>("GateOut");
    auto *out = ctx.Output<Tensor>("Out");
354 355 356 357

    const bool merge_qkv = ctx.Attr<bool>("merge_qkv");
    const bool has_gating = ctx.Attr<bool>("has_gating");

L
Leo Chen 已提交
358
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
359 360 361 362 363 364 365 366
    AllocWithDebugInfo<T>(dev_ctx, "softmax_out", softmax_out);
    AllocWithDebugInfo<T>(dev_ctx, "fmha_out", fmha_out);
    if (has_gating) {
      AllocWithDebugInfo<T>(dev_ctx, "gate_out", gate_out);
    }
    AllocWithDebugInfo<T>(dev_ctx, "out", out);

    // When seq_len_r = m_size, q_dim = kv_dim, QKV matmul can be merged.
367 368
    GateAttentionConfig<T> config(
        dev_ctx, query, key, query_weight, qkv_weight, merge_qkv, has_gating);
369 370

    if (merge_qkv) {
371 372 373 374 375 376 377 378
      PADDLE_ENFORCE_EQ(
          !key || query == key || query->data<T>() == key->data<T>(),
          true,
          platform::errors::InvalidArgument(
              "key is expected to be nullptr or the same as "
              "query, but recieved key=%p, query=%p.",
              key,
              query));
379

380
      // 1. Merged QKV Matmul: einsum(nbhqk,nbkhc -> nbqhc)
381
      Tensor *qkv_out = config.GetQKVOut();
382 383
      ComputeMergedQKVMatmulForward<T>(ctx, config, query, qkv_out);

384
      AllocWithDebugInfo<T>(dev_ctx, "qkv_transpose_out", qkv_transpose_out);
385 386
    } else {
      // 1. Separated QKV Matmul
387 388 389
      Tensor *query_out = config.GetQueryOut();
      Tensor *key_out = config.GetKeyOut();
      Tensor *value_out = config.GetValueOut();
390 391
      ComputeSeparatedQKVMatmulForward<T>(
          ctx, config, query, key, query_out, key_out, value_out);
392

393 394 395
      AllocWithDebugInfo<T>(dev_ctx, "q_transpose_out", q_transpose_out);
      AllocWithDebugInfo<T>(dev_ctx, "k_transpose_out", k_transpose_out);
      AllocWithDebugInfo<T>(dev_ctx, "v_transpose_out", v_transpose_out);
396 397 398 399
    }

    // 2. FMHA
    auto fmha_compute = FMHAGateRef<T>(dev_ctx, merge_qkv);
400 401 402 403 404 405 406 407 408 409
    fmha_compute.ComputeForward(nonbatched_bias,
                                src_mask,
                                q_transpose_out,
                                k_transpose_out,
                                v_transpose_out,
                                qkv_transpose_out,
                                softmax_out,
                                fmha_out,
                                gate_out,
                                &config);
410 411

    // 3. Gating Linear
412 413 414
    if (has_gating) {
      ComputeGatingLinearForward<T>(ctx, config, query, fmha_out, gate_out);
    }
415 416

    // 4. Output Linear
417 418
    Tensor *fmha_or_gate_out = has_gating ? gate_out : fmha_out;
    ComputeOutputLinearForward<T>(ctx, config, fmha_or_gate_out, out);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  }
};

template <typename T>
class FusedGateAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    // forward input
    const auto *query = ctx.Input<Tensor>("Query");
    const auto *key = ctx.Input<Tensor>("Key");
    const auto *query_weight = ctx.Input<Tensor>("QueryWeight");
    const auto *qkv_weight = ctx.Input<Tensor>("QKVWeight");

    // forward output, backward input
    const auto *q_transpose_out = ctx.Input<Tensor>("QueryTransposeOut");
    const auto *k_transpose_out = ctx.Input<Tensor>("KeyTransposeOut");
    const auto *v_transpose_out = ctx.Input<Tensor>("ValueTransposeOut");
    const auto *qkv_transpose_out = ctx.Input<Tensor>("QKVTransposeOut");
    const auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    const auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
439
    const auto *gate_out = ctx.Input<Tensor>("GateOut");
440 441 442 443 444

    // backward output
    auto *query_grad = ctx.Output<Tensor>(framework::GradVarName("Query"));
    auto *nonbatched_bias_grad =
        ctx.Output<Tensor>(framework::GradVarName("NonbatchedBias"));
445 446 447

    bool has_gating = ctx.Attr<bool>("has_gating");
    bool merge_qkv = ctx.Attr<bool>("merge_qkv");
448

L
Leo Chen 已提交
449
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
450
    AllocWithDebugInfo<T>(dev_ctx, "query_grad", query_grad);
451

452 453
    GateAttentionGradConfig<T> config(
        dev_ctx, query, key, query_weight, qkv_weight, merge_qkv, has_gating);
454

455 456 457
    Tensor fmha_out_grad;
    fmha_out_grad.Resize(config.gate_out_dims);
    AllocWithDebugInfo<T>(dev_ctx, "fmha_out_grad", &fmha_out_grad);
458
    if (has_gating) {
459 460 461 462 463 464 465 466
      // 1. Gradient of Output Linear: out = Linear(gate_out)
      Tensor gate_out_grad;
      gate_out_grad.Resize(config.gate_out_dims);
      AllocWithDebugInfo<T>(dev_ctx, "gate_out_grad", &gate_out_grad);
      ComputeOutputLinearBackward<T>(ctx, config, gate_out, &gate_out_grad);

      // 2. Gradient of Gating Linear
      // Forward: gate_out = Sigmoid(Linear(fmha_out)) * fmha_out
467 468 469 470 471 472
      ComputeGatingLinearBackward<T>(ctx,
                                     config,
                                     query,
                                     fmha_out,
                                     &gate_out_grad,
                                     query_grad,
473 474 475 476
                                     &fmha_out_grad);
    } else {
      // 1. Gradient of Output Linear: out = Linear(fmha_grad)
      ComputeOutputLinearBackward<T>(ctx, config, fmha_out, &fmha_out_grad);
477 478 479 480
    }

    // 3. Gradient of FMHA
    if (nonbatched_bias_grad) {
481 482
      AllocWithDebugInfo<T>(
          dev_ctx, "nonbatched_bias_grad", nonbatched_bias_grad);
483 484 485
    }

    auto fmha_compute = FMHAGateRef<T>(dev_ctx, merge_qkv);
486 487 488 489 490 491 492 493 494
    fmha_compute.ComputeBackward(q_transpose_out,
                                 k_transpose_out,
                                 v_transpose_out,
                                 qkv_transpose_out,
                                 softmax_out,
                                 &fmha_out_grad,
                                 nullptr,
                                 nonbatched_bias_grad,
                                 &config);
495 496 497 498

    bool use_addto = has_gating ? true : false;
    if (merge_qkv) {
      // 4. Gradient of Merged QKV Matmul
499
      Tensor *qkv_out_grad = config.GetQKVOutGrad();
500 501
      ComputeMergedQKVMatmulBackward<T>(
          ctx, config, query, qkv_out_grad, query_grad, use_addto);
502 503 504 505
    } else {
      // 4. Gradient of Separated QKV Matmul
      auto *key_grad = ctx.Output<Tensor>(framework::GradVarName("Key"));
      if (key_grad) {
506
        AllocWithDebugInfo<T>(dev_ctx, "key_grad", key_grad);
507
      }
508 509 510
      Tensor *query_out_grad = config.GetQueryOutGrad();
      Tensor *key_out_grad = config.GetKeyOutGrad();
      Tensor *value_out_grad = config.GetValueOutGrad();
511 512 513 514 515 516 517 518 519 520
      ComputeSeparatedQKVMatmulBackward<T>(ctx,
                                           config,
                                           query,
                                           key,
                                           query_out_grad,
                                           key_out_grad,
                                           value_out_grad,
                                           query_grad,
                                           key_grad,
                                           use_addto);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(fused_gate_attention,
                        ops::FusedGateAttentionOpKernel<float>,
                        ops::FusedGateAttentionOpKernel<plat::float16>,
                        ops::FusedGateAttentionOpKernel<plat::bfloat16>);
REGISTER_OP_CUDA_KERNEL(fused_gate_attention_grad,
                        ops::FusedGateAttentionGradKernel<float>,
                        ops::FusedGateAttentionGradKernel<plat::float16>,
                        ops::FusedGateAttentionGradKernel<plat::bfloat16>);
#else
REGISTER_OP_CUDA_KERNEL(fused_gate_attention,
                        ops::FusedGateAttentionOpKernel<float>,
                        ops::FusedGateAttentionOpKernel<double>,
                        ops::FusedGateAttentionOpKernel<plat::float16>,
                        ops::FusedGateAttentionOpKernel<plat::bfloat16>);
REGISTER_OP_CUDA_KERNEL(fused_gate_attention_grad,
                        ops::FusedGateAttentionGradKernel<float>,
                        ops::FusedGateAttentionGradKernel<double>,
                        ops::FusedGateAttentionGradKernel<plat::float16>,
                        ops::FusedGateAttentionGradKernel<plat::bfloat16>);
#endif