test_conv3d_transpose_op.py 3.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
import unittest
import numpy as np
from op_test import OpTest


def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param):
    # [2, 3, 5, 5, 5]
    in_n, in_c, in_d, in_h, in_w = input_.shape
    # [3, 6, 3, 3, 3]
    f_c, out_c, f_d, f_h, f_w = filter_.shape
    assert in_c == f_c

    stride, pad = conv3dtranspose_param['stride'], conv3dtranspose_param['pad']
    out_d = (in_d - 1) * stride[0] + f_d
    out_h = (in_h - 1) * stride[1] + f_h
    out_w = (in_w - 1) * stride[2] + f_w

    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
                    input_masked = input_[n, :, d, i, j]  # (c)
                    input_masked = np.reshape(input_masked, (in_c, 1, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                    for k in range(out_c):
                        tmp_out = np.sum(input_masked * filter_[:, k, :, :, :],
                                         axis=0)
                        d1, d2 = d * stride[0], d * stride[0] + f_d
                        i1, i2 = i * stride[1], i * stride[1] + f_h
                        j1, j2 = j * stride[2], j * stride[2] + f_w
                        out[n, k, d1:d2, i1:i2, j1:j2] += tmp_out

    return out


class TestConv3dTransposeOp(OpTest):
    def setUp(self):
        # init as conv transpose
        self.init_op_type()

        # [2, 3, 5, 5, 5] -> kernel [3, 6, 3, 3, 3] -> output [2, 6, 7, 7, 7]
        self.init_test_case()

        conv3dtranspose_param = {'stride': self.stride, 'pad': self.pad}
        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")
        output = conv3dtranspose_forward_naive(
            input_, filter_, conv3dtranspose_param).astype("float32")
        # print 'deconv output py', output, output.shape

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            # 'dilations': self.dilations
        }
        self.outputs = {'Output': output}

    def test_check_output(self):
        print 'check output here'
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
C
chengduoZH 已提交
68
            set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
69 70 71 72 73

    def test_check_grad_no_filter(self):
        self.check_grad(
            ['Input'],
            'Output',
C
chengduoZH 已提交
74
            max_relative_error=0.02,
C
chengduoZH 已提交
75 76 77 78 79 80
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        self.check_grad(
            ['Filter'],
            'Output',
C
chengduoZH 已提交
81
            max_relative_error=0.02,
C
chengduoZH 已提交
82 83 84 85 86 87 88 89 90 91 92
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
93
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
94 95 96 97


if __name__ == '__main__':
    unittest.main()