dist_default.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
J
JZ-LIANG 已提交
18
from .common import register_distributed_operator_impl, is_parameter_related
19 20 21 22 23 24
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26
from ..dist_attribute import OperatorDistributedAttribute
27 28 29 30 31
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33 34 35
from ..utils import _get_comm_group, _get_corresponding_rank


36
class DistributedDefault(DistributedOperatorImplContainer):
37 38 39 40 41
    def __init__(self, name):
        super(DistributedDefault, self).__init__()
        self._name = name


42 43
register_distributed_operator_impl_container("default",
                                             DistributedDefault("default"))
44 45


46
# Replicated Default
47 48 49 50 51 52 53
class DistributedDefaultImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedDefaultImpl0, self).__init__()
        self._name = name
        self._forward_implemented = True
        self._backward_implemented = True

54
    def is_input_compatible(self, dist_op):
55 56
        raise NotImplementedError("Please Implement this method.")

57
    def is_output_compatible(self, dist_op):
58 59
        raise NotImplementedError("Please Implement this method.")

60
    def update_dims_mapping(self, dist_op):
61 62 63 64 65
        raise NotImplementedError("Please Implement this method.")

    @staticmethod
    def forward(ctx, *args, **kwargs):

66 67 68 69 70
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
71

72
        # check validation of inputs / outputs
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(src_op.desc)
90
        set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
91 92 93 94 95 96 97 98 99 100 101
        for input_name in src_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in src_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

        # param initialization sync
        for varname in dist_op_desc.input_arg_names():
            if startup_block.has_var(varname) and startup_block.var(
                    varname
102 103
            ).is_parameter and varname not in dist_op_context.already_init_sync_vars:
                dist_op_context.already_init_sync_vars.add(varname)
104
                param = startup_block.var(varname)
105 106 107
                param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
                process_mesh = param_dist_attr.process_mesh
                dims_mapping = param_dist_attr.dims_mapping
108 109

                # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
110 111 112
                if rank_id not in process_mesh.processes:
                    rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                      rank_id)
113

114
                # NOTE all not splited axis should be presented in mesh
115 116 117 118
                for axis, size in enumerate(process_mesh.topology):
                    if size <= 1 or axis in dims_mapping:
                        pass
                    else:
119 120 121
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      axis, rank_id)
122 123 124 125 126 127 128 129 130 131 132 133 134 135
                        sync_group = new_process_group(group_ranks)

                        new_op = startup_block.append_op(
                            type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': sync_group.id,
                                'root': 0,
                                'use_calc_stream': True,
                                OP_ROLE_KEY: OpRole.Forward
                            })

                        # set distributed attribute
136 137
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
138 139 140
                        op_attr.set_output_dims_mapping(param.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(param.name, dims_mapping)
141
                        ctx.set_op_dist_attr_for_program(new_op, op_attr)
142 143 144 145 146 147 148

                startup_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
149 150 151 152
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        backward_op = dist_op_context.get_cur_src_op()
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
153 154
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
155
        rank_id = dist_op_context.get_rank_id()
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        # check validation of inputs / outputs
        for input_name in backward_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                backward_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in backward_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                backward_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
        dist_op_desc = main_block.desc.append_op()
        dist_op_desc.copy_from(backward_op.desc)
175 176
        # Refer to the related dist op
        set_dist_op_desc_original_id(dist_op_desc, backward_op.desc, ctx)
177 178 179 180 181 182 183
        for input_name in backward_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in backward_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

        main_block._sync_with_cpp()

184
        # check if need gradient allreduce
185
        # if there is a non-gradient & non-parameter input and its batch dimension is splited,
186 187 188 189
        # we need insert gradient allreduce for the gradient of parameter in its output
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
190 191
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
192 193

                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
194
                    process_mesh = dist_attr.process_mesh
195 196 197
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
198 199 200
                    if rank_id not in process_mesh.processes:
                        rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                          rank_id)
201 202 203 204 205

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
206 207 208
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      batch_size_axis, rank_id)
209 210 211 212 213 214 215 216
                        dp_degree = len(group_ranks)
                        dp_group = new_process_group(group_ranks)
                        break

        if need_gradient_allreduce:
            allreduce_vars = []
            for input_name in backward_op.desc.input_names():
                for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
217 218
                    if "@GRAD" not in varname and is_parameter_related(
                            varname, main_block):
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                        assert len(
                            backward_op.desc.input(input_name)
                        ) == 1, "parameter input to grad op should be length 1, but got [{}]".format(
                            backward_op.desc.input(input_name))

                        assert varname + "@GRAD" in backward_op.desc.output_arg_names(
                        ), "parameter's grad [{}] not found in the grad op's output".format(
                            varname + "@GRAD")
                        assert len(
                            backward_op.desc.output(input_name + "@GRAD")
                        ) == 1, "parameter grad of grad op should be length 1, but got [{}]".format(
                            backward_op.desc.output(input_name + "@GRAD"))
                        allreduce_vars.append(
                            backward_op.desc.output(input_name + "@GRAD")[0])

            if len(allreduce_vars) > 0:

                for varname in allreduce_vars:

                    grad_var = main_block.var(varname)
                    allreduce_op = main_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [grad_var]},
                        outputs={'Out': [grad_var]},
                        attrs={
                            'ring_id': dp_group.id,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Backward
                        })

                    scale_op = main_block.append_op(
                        type='scale',
                        inputs={'X': grad_var},
                        outputs={'Out': grad_var},
                        attrs={
                            'scale': 1.0 / dp_degree,
                            OP_ROLE_KEY: OpRole.Backward
                        })

258 259 260
                    dims_mapping = ctx.get_tensor_dist_attr_for_program(
                        grad_var).dims_mapping
                    process_mesh = dist_attr.process_mesh
261
                    for op in [allreduce_op, scale_op]:
262 263
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
264 265 266 267
                        op_attr.set_output_dims_mapping(grad_var.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(grad_var.name,
                                                       dims_mapping)
268
                        ctx.set_op_dist_attr_for_program(op, op_attr)
269 270 271 272 273 274

                main_block._sync_with_cpp()


register_distributed_operator_impl(
    "default", DistributedDefaultImpl0("replicate_parallel"))