completion.py 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from copy import deepcopy

from paddle.fluid import core
from paddle.fluid import framework

from .utils import compute_compatible_process_mesh
from .utils import compute_compatible_dim_mapping
from .utils import compute_compatible_dims_mapping
23
from .utils import print_program_with_dist_attr
24
from .operators import find_best_compatible_distributed_operator_impl
25 26 27 28 29
from .dist_context import get_default_distributed_context
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
30
from paddle.distributed.fleet.meta_optimizers.common import OpRole
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

ELEMENTWISE_LIKE_OP_LIST = ["elementwise_add", "gelu", "dropout", "cast"]


def is_elementwise_like_op(op_type):
    if op_type in ELEMENTWISE_LIKE_OP_LIST:
        return True
    else:
        return False


def update_tensor_node_process_mesh(dist_context, tensor_node, fwd=True):
    """
    Update tensor's process mesh by using its predecessor's process mesh if in the forward direction, 
    and by using its successor's process mesh if in the backward direction. Note: only the equal 
    process meshes are compatible for now.
    """
    changed = False
49
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(tensor_node)
50 51
    if tensor_dist_attr.is_annotated("process_mesh"):
        return changed
52
    tensor_process_mesh = tensor_dist_attr.process_mesh
53 54 55 56
    if fwd:
        inputs_process_meshes = []
        for pred_op_node in tensor_node.inputs:
            if pred_op_node.op() is not None:
57
                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
58
                    pred_op_node)
59
                op_process_mesh = op_dist_attr.process_mesh
60 61 62 63
                inputs_process_meshes.append(op_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            inputs_process_meshes)
        if compatible_process_mesh is not None and tensor_process_mesh is None:
64
            tensor_dist_attr.process_mesh = compatible_process_mesh
65 66 67 68 69
            changed = True
    else:
        outputs_process_meshes = []
        for succ_op_node in tensor_node.outputs:
            if succ_op_node.op() is not None:
70
                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
71
                    succ_op_node)
72
                op_process_mesh = op_dist_attr.process_mesh
73 74 75 76
                outputs_process_meshes.append(op_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            outputs_process_meshes)
        if compatible_process_mesh is not None and tensor_process_mesh is None:
77
            tensor_dist_attr.process_mesh = compatible_process_mesh
78 79 80 81 82 83 84 85 86 87 88
            changed = True
    return changed


def update_op_node_process_mesh(dist_context, op_node, fwd=True):
    """
    Update op's process mesh by using its predecessor's process mesh if in the forward direction, 
    and by using its successor's process mesh if in the backward direction. Note: only the equal 
    process meshes are compatible for now.
    """
    changed = False
89
    op_dist_attr = dist_context.get_op_dist_attr_for_graph(op_node)
90 91
    if op_dist_attr.is_annotated("process_mesh"):
        return changed
92
    op_process_mesh = op_dist_attr.process_mesh
93 94 95 96
    if fwd:
        inputs_process_meshes = []
        for tensor_node in op_node.inputs:
            if tensor_node.var() is not None:
97
                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
98
                    tensor_node)
99
                tensor_process_mesh = tensor_dist_attr.process_mesh
100 101 102 103
                inputs_process_meshes.append(tensor_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            inputs_process_meshes)
        if compatible_process_mesh is not None and op_process_mesh is None:
104
            op_dist_attr.process_mesh = compatible_process_mesh
105 106 107 108 109
            changed = True
    else:
        outputs_process_meshes = []
        for tensor_node in op_node.outputs:
            if tensor_node.var() is not None:
110
                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
111
                    tensor_node)
112
                tensor_process_mesh = tensor_dist_attr.process_mesh
113 114 115 116
                outputs_process_meshes.append(tensor_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            outputs_process_meshes)
        if compatible_process_mesh is not None and op_process_mesh is None:
117
            op_dist_attr.process_mesh = compatible_process_mesh
118 119 120 121
            changed = True
    return changed


122
def update_op_dims_mapping_by_default_dist_impl(dist_context, op_node):
123 124
    """Each operator has a default distributed operator, only allowed to be sharded in batch dimension."""
    changed = False
125 126 127 128 129
    if (not op_node.is_op()) or (op_node.op() is None):
        return False
    op_desc = op_node.op()
    dist_op = dist_context.get_dist_op_for_graph(op_node)
    op_dist_attr = dist_op.dist_attr
130 131 132 133 134 135 136 137 138
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
139 140
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
141 142 143 144 145 146 147 148 149
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
                assert mapping == -1, \
                    "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                        .format(op_desc.type(), idx, mapping)
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
150 151
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[0])
        else:
            assert dims_mapping[0] == -1, \
                "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part."\
                    .format(op_desc.type(), mapping)
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
    assert compatible_dim_mapping is not None, "There is no compatible dim mapping."
    for arg_name in op_desc.input_arg_names():
175 176
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
177 178 179 180 181 182
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
183 184
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
185 186 187 188 189 190 191 192 193 194 195 196 197 198
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


199
def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_context, op_node):
200 201
    """Element-wise operator can be sharded in any way (but should take care of broadcasting)."""
    changed = False
202 203 204 205
    if (not op_node.is_op()) or (op_node.op() is None):
        return False
    op_desc = op_node.op()
    op_dist_attr = dist_context.get_op_dist_attr_for_graph(op_node)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
    assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name,
                                                    compatible_dims_mapping)
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
            op_dist_attr.set_output_dims_mapping(arg_name,
                                                 compatible_dims_mapping)
            changed = True

    return changed


def update_tensor_node_dims_mapping(dist_context, tensor_node, fwd=True):
    changed = False
    if (not tensor_node.is_var()) or (tensor_node.var() is None):
        return False
    tensor_desc = tensor_node.var()
271 272 273
    # Skip reader tensor
    if tensor_desc.type() == core.VarDesc.VarType.READER:
        return False
274
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(tensor_node)
275 276 277
    assert tensor_dist_attr is not None
    if tensor_dist_attr.is_annotated("dims_mapping"):
        return False
278
    tensor_dims_mapping = tensor_dist_attr.dims_mapping
279 280 281 282
    if fwd:
        dims_mapping_list = []
        for pred_op_node in tensor_node.inputs:
            if pred_op_node.op() is not None:
283 284 285 286
                if pred_op_node.op().type() == "create_py_reader" \
                    or pred_op_node.op().type() == "create_double_buffer_reader" \
                    or pred_op_node.op().type() == "read":
                    continue
287
                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
288 289 290 291 292 293 294 295 296
                    pred_op_node)
                op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                    tensor_desc.name())
                dims_mapping_list.append(op_dims_mapping)
        dims_mapping_list.append(tensor_dims_mapping)
        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
        if (compatible_dims_mapping is not None) and \
            (compatible_dims_mapping != tensor_dims_mapping):
297
            tensor_dist_attr.dims_mapping = compatible_dims_mapping
298 299 300 301 302
            changed = True
    else:
        dims_mapping_list = []
        for succ_op_node in tensor_node.outputs:
            if succ_op_node.op() is not None:
303 304 305 306
                if succ_op_node.op().type() == "create_py_reader" \
                    or succ_op_node.op().type() == "create_double_buffer_reader" \
                    or succ_op_node.op().type() == "read":
                    continue
307
                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
308 309 310 311 312 313 314 315 316
                    succ_op_node)
                op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                    tensor_desc.name())
                dims_mapping_list.append(op_dims_mapping)
        dims_mapping_list.append(tensor_dims_mapping)
        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
        if (compatible_dims_mapping is not None) and \
            (compatible_dims_mapping != tensor_dims_mapping):
317
            tensor_dist_attr.dims_mapping = compatible_dims_mapping
318 319 320 321 322 323 324 325
            changed = True
    return changed


def update_op_node_dims_mapping(dist_context, op_node, fwd=True):
    changed = False
    if (not op_node.is_op()) or (op_node.op() is None):
        return False
326
    # Skip reader op
327
    op_desc = op_node.op()
328 329 330 331
    if op_desc.type() == "create_py_reader" \
        or op_desc.type() == "create_double_buffer_reader" \
        or op_desc.type() == "read":
        return False
332 333
    dist_op = dist_context.get_dist_op_for_graph(op_node)
    op_dist_attr = dist_op.dist_attr
334 335 336
    if fwd:
        for tensor_node in op_node.inputs:
            if tensor_node.var() is not None:
337 338
                if tensor_node.var().type() == core.VarDesc.VarType.READER:
                    continue
339 340 341 342
                tensor_desc = tensor_node.var()
                if op_dist_attr.is_annotated_input_dims_mapping(
                        tensor_desc.name()):
                    continue
343
                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
344
                    tensor_node)
345
                tensor_dims_mapping = tensor_dist_attr.dims_mapping
346 347 348 349 350 351 352 353 354 355 356
                op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                    tensor_desc.name())
                compatible_dims_mapping = compute_compatible_dims_mapping(
                    [op_dims_mapping, tensor_dims_mapping])
                if (compatible_dims_mapping is not None) and \
                    (compatible_dims_mapping != op_dims_mapping):
                    op_dist_attr.set_input_dims_mapping(tensor_desc.name(),
                                                        compatible_dims_mapping)
                    changed = True
        # Find the most compatible implemenetations from the distributed operator
        op_dist_impl, op_dist_impl_idx = find_best_compatible_distributed_operator_impl(
357
            op_desc.type(), dist_op, fwd=True)
358
        if op_dist_impl is not None:
359
            dim_changed = op_dist_impl.update_dims_mapping(dist_op)
360 361 362
            if dim_changed:
                changed = True
            # This statement will be replaced by a good way
363 364 365
            if op_dist_impl.is_compatible(dist_op):
                op_dist_attr.impl_type = op_desc.type()
                op_dist_attr.impl_idx = op_dist_impl_idx
366 367
        elif is_elementwise_like_op(op_desc.type()):
            dim_changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
368
                dist_context, op_node)
369 370
            if dim_changed:
                changed = True
371 372
            op_dist_attr.impl_type = "element-wise"
            op_dist_attr.impl_idx = -1
373 374
        else:
            dim_changed = update_op_dims_mapping_by_default_dist_impl(
375
                dist_context, op_node)
376 377
            if dim_changed:
                changed = True
378 379
            op_dist_attr.impl_type = "default"
            op_dist_attr.impl_idx = -2
380 381 382
    else:
        for tensor_node in op_node.outputs:
            if tensor_node.var() is not None:
383 384
                if tensor_node.var().type() == core.VarDesc.VarType.READER:
                    continue
385 386 387 388
                tensor_desc = tensor_node.var()
                if op_dist_attr.is_annotated_output_dims_mapping(
                        tensor_desc.name()):
                    continue
389
                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
390
                    tensor_node)
391
                tensor_dims_mapping = tensor_dist_attr.dims_mapping
392 393 394 395 396 397 398 399 400 401 402
                op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                    tensor_desc.name())
                compatible_dims_mapping = compute_compatible_dims_mapping(
                    [op_dims_mapping, tensor_dims_mapping])
                if (compatible_dims_mapping is not None) and \
                    (compatible_dims_mapping != op_dims_mapping):
                    op_dist_attr.set_output_dims_mapping(
                        tensor_desc.name(), compatible_dims_mapping)
                    changed = True
        # Find the most compatible implemenetations from the distributed operator
        op_dist_impl, op_dist_impl_idx = find_best_compatible_distributed_operator_impl(
403
            op_desc.type(), dist_op, fwd=False)
404
        if op_dist_impl is not None:
405
            dim_changed = op_dist_impl.update_dims_mapping(dist_op)
406 407 408
            if dim_changed:
                changed = True
            # This statement will be replaced by a good way
409 410 411
            if op_dist_impl.is_compatible(dist_op):
                op_dist_attr.impl_type = op_desc.type()
                op_dist_attr.impl_idx = op_dist_impl_idx
412 413
        elif is_elementwise_like_op(op_desc.type()):
            dim_changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
414
                dist_context, op_node)
415 416
            if dim_changed:
                changed = True
417 418
            op_dist_attr.impl_type = "element-wise"
            op_dist_attr.impl_idx = -1
419 420
        else:
            dim_changed = update_op_dims_mapping_by_default_dist_impl(
421
                dist_context, op_node)
422 423
            if dim_changed:
                changed = True
424 425
            op_dist_attr.impl_type = "default"
            op_dist_attr.impl_idx = -2
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    return changed


def complete_annotation(program, dist_context=None):
    """ Complete annotation for the partial annotated program.

    Arguments:
        program: partial annotated program.
        dist_context: the distributed context is used to store distributed attributes for program.
            If not provided, the default one will be used.
    Returns:
        program: completed annotated program.
    """

    # Use the default distribted context for completeion if there is no one
    if dist_context is None:
        dist_context = get_default_distributed_context()
443 444 445
        dist_context.serial_program = program
    else:
        dist_context.serial_program = program
446

447
    # print_program_with_dist_attr(program, dist_context)
448

449 450
    # Initialize distributed attributes for all var and op node in program
    dist_context.init_dist_attr_for_program()
451 452

    # Initialize distributed attributes for all var and op node in graph
453
    dist_context.init_dist_attr_for_graph()
454

455
    # Complete process mesh for each node
456
    all_nodes = list(dist_context.serial_graph.all_nodes())
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

    def sort_key_fun(node):
        first = -1
        if node.is_op():
            first = 0
        else:
            first = 1
        second = -1
        if node.is_op() and node.op() is not None:
            second = node.op().id()
        if node.is_var() and node.var() is not None:
            second = node.var().id()
        return (first, second)

    all_nodes.sort(key=sort_key_fun)

473 474
    reach_fix_point = False
    while not reach_fix_point:
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        total_changed = False
        reach_fwd_fix_point = False
        reach_bwd_fix_point = False
        while not reach_fwd_fix_point:
            changed = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
                    tensor_changed = update_tensor_node_process_mesh(
                        dist_context, node, fwd=True)
                    if tensor_changed:
                        changed = True
                if node.is_op() and node.op() is not None:
                    op_changed = update_op_node_process_mesh(
                        dist_context, node, fwd=True)
                    if op_changed:
                        changed = True
            if changed:
                reach_fwd_fix_point = False
                total_changed = True
            else:
                reach_fwd_fix_point = True
        while not reach_bwd_fix_point:
            changed = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
                    tensor_changed = update_tensor_node_process_mesh(
                        dist_context, node, fwd=False)
                    if tensor_changed:
                        changed = True
                if node.is_op() and node.op() is not None:
                    op_changed = update_op_node_process_mesh(
                        dist_context, node, fwd=False)
                    if op_changed:
                        changed = True
            if changed:
                reach_bwd_fix_point = False
                total_changed = True
            else:
                reach_bwd_fix_point = True
        if total_changed:
515 516 517
            reach_fix_point = False
        else:
            reach_fix_point = True
518 519 520 521
            # Validation the completion of process meshes and should be moved to a proper location
            is_wrong = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
522
                    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
523
                        node)
524
                    if tensor_dist_attr.process_mesh is None:
525 526 527
                        msg_str = ""
                        for op_node in node.inputs:
                            if op_node.op() is not None:
528
                                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
529 530 531
                                    op_node)
                                msg_str += "{} [{}], ".format(
                                    op_node.op().type(),
532
                                    op_dist_attr.process_mesh)
533 534 535 536 537
                            else:
                                msg_str += "{} [{}], ".format(op_node.name(),
                                                              None)
                        for op_node in node.outputs:
                            if op_node.op() is not None:
538
                                op_dist_attr = dist_context.get_op_dist_attr_for_graph(
539 540 541
                                    op_node)
                                msg_str += "{} [{}], ".format(
                                    op_node.op().type(),
542
                                    op_dist_attr.process_mesh)
543 544 545 546 547 548 549 550
                            else:
                                msg_str += "{} [{}], ".format(op_node.name(),
                                                              None)
                        msg_str = "Cannot decide ProcessMesh of {} among {}. Please use shard_tensor api explicitly to annotate it".format(
                            node.var().name(), msg_str[:-2])
                        is_wrong = True
                        print(msg_str)
                if node.is_op() and node.op() is not None:
551 552
                    op_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
                    if op_dist_attr.process_mesh is None:
553 554 555
                        msg_str = ""
                        for tensor_node in node.inputs:
                            if tensor_node.var() is not None:
556
                                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
557 558 559
                                    tensor_node)
                                msg_str += "{} [{}], ".format(
                                    tensor_node.var().name(),
560
                                    tensor_dist_attr.process_mesh)
561 562 563 564 565
                            else:
                                msg_str += "{} [{}], ".format(
                                    tensor_node.name(), None)
                        for tensor_node in node.outputs:
                            if tensor_node.var() is not None:
566
                                tensor_dist_attr = dist_context.get_tensor_dist_attr_for_graph(
567 568 569
                                    tensor_node)
                                msg_str += "{} [{}], ".format(
                                    tensor_node.var().name(),
570
                                    tensor_dist_attr.process_mesh)
571 572 573 574 575 576 577 578 579 580 581
                            else:
                                msg_str += "{} [{}], ".format(
                                    tensor_node.name(), None)
                        msg_str = "Cannot decide ProcessMesh of {} among {}. Please use shard_op api explicitly to annotate it".format(
                            node.op().type(), msg_str[:-2])
                        is_wrong = True
                        print(msg_str)
                if node.is_op() and node.op() is None:
                    print("op op is None", node.name())
            if is_wrong:
                assert False, "Cannot complete process_meshes of the program."
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

    # Complete dims_mapping for each node
    reach_fix_point = False
    while not reach_fix_point:
        changed = False
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
                tensor_changed = update_tensor_node_dims_mapping(
                    dist_context, node, fwd=True)
                if tensor_changed:
                    changed = True
            if node.is_op() and node.op() is not None:
                op_changed = update_op_node_dims_mapping(
                    dist_context, node, fwd=True)
                if op_changed:
                    changed = True
        for node in reversed(all_nodes):
            if node.is_var() and node.var() is not None:
                tensor_changed = update_tensor_node_dims_mapping(
                    dist_context, node, fwd=False)
                if tensor_changed:
                    changed = True
            if node.is_op() and node.op() is not None:
                op_changed = update_op_node_dims_mapping(
                    dist_context, node, fwd=False)
                if op_changed:
                    changed = True
        if changed:
            reach_fix_point = False
        else:
            reach_fix_point = True

    # Copy the corresponding distributed attribute from graph to program
615 616
    dist_context.copy_dist_attr_from_graph_to_program()
    dist_context.clear_dist_info_for_graph()
617 618

    # Do the validation check and amend some completion
619 620 621 622
    dist_context.amend_dist_attr_for_program()

    # print_program_with_dist_attr(program, dist_context)
    dist_context.validate_dist_attr_for_program()
623 624

    return program
C
caozhou 已提交
625 626


627
def complete_backward_annotation(auto_parallel_main_prog, dist_context=None):
C
caozhou 已提交
628 629 630 631 632 633 634
    """Complete the annotation of vars and ops in the backward phase for parallel program."""

    def _is_grad_var_name(name):
        if "@GRAD" in name:
            return True
        return False

635 636 637 638 639 640 641 642 643 644 645 646 647 648
    def _get_forward_varname_from_grad_varname(grad_var_name):
        assert _is_grad_var_name(
            grad_var_name), "[{}] is not a grad varnme.".format(grad_var_name)
        return grad_var_name[:grad_var_name.find("@GRAD")]

    def _get_op_by_id(ops, id):
        for op in ops:
            if op.desc.id() == id:
                return op
        return None

    if dist_context is None:
        dist_context = get_default_distributed_context()

649
    first_backward_op_idx = -1
C
caozhou 已提交
650
    for idx, op in enumerate(auto_parallel_main_prog.global_block().ops):
651 652 653 654
        if int(op.attr('op_role')) == int(
                int(core.op_proto_and_checker_maker.OpRole.Backward) | int(
                    core.op_proto_and_checker_maker.OpRole.Loss)):
            assert op.type == "fill_constant"
655
            first_backward_op_idx = idx
656 657
            break

658
    assert first_backward_op_idx >= 0, "No backward procedure found in this program."
C
caozhou 已提交
659 660 661

    ops = list(auto_parallel_main_prog.global_block().ops)
    vars = auto_parallel_main_prog.global_block().vars
662
    dist_op_context = dist_context.dist_op_context
663

664
    for idx in range(first_backward_op_idx, len(ops)):
665 666

        # complete the initial grad loss op
667 668 669 670 671 672 673 674 675 676 677
        if idx == first_backward_op_idx:
            assert ops[idx].type == "fill_constant"
            assert len(
                ops[idx].input_arg_names
            ) == 0, "first backward op should has only ONE output, but got [{}]".format(
                len(ops[idx].input_arg_names))
            assert len(
                ops[idx].output_arg_names
            ) == 1, "first backward op should has only ONE output, but got [{}]".format(
                len(ops[idx].output_arg_names))

C
caozhou 已提交
678
            grad_var = vars[ops[idx].output_arg_names[0]]
679 680
            forward_var_name = _get_forward_varname_from_grad_varname(
                grad_var.name)
C
caozhou 已提交
681
            forward_var = vars[forward_var_name]
682 683

            # TODO complete other attribte for grad var
684 685 686 687 688 689 690 691 692 693 694 695 696 697
            tensor_dist_attr = TensorDistributedAttribute()
            process_mesh = dist_context.get_tensor_dist_attr_for_program(
                forward_var).process_mesh
            dims_mapping = dist_context.get_tensor_dist_attr_for_program(
                forward_var).dims_mapping
            tensor_dist_attr.dims_mapping = dims_mapping
            tensor_dist_attr.process_mesh = process_mesh
            dist_context.set_tensor_dist_attr_for_program(grad_var,
                                                          tensor_dist_attr)

            op_dist_attr = OperatorDistributedAttribute()
            op_dist_attr.process_mesh = process_mesh
            op_dist_attr.set_output_dims_mapping(grad_var.name, dims_mapping)
            dist_context.set_op_dist_attr_for_program(ops[idx], op_dist_attr)
C
caozhou 已提交
698 699
            continue

700
        # complete the annotation of grad op (xxx_grad op or sum op)
701
        # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
702
        grad_op = ops[idx]
703
        if grad_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
704 705
            # TODO support the case where one forward op corresponding to multiple xxx_grad op
            forward_op = _get_op_by_id(
706
                ops[:first_backward_op_idx],
707
                dist_op_context.grad_op_id_to_op_id[grad_op.desc.id()])
708 709 710
            assert forward_op is not None

            # op dist attr
711
            forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
712
                forward_op)
713 714 715
            forward_op_process_mesh = forward_op_dist_attr.process_mesh
            grad_op_dist_attr = OperatorDistributedAttribute()
            grad_op_dist_attr.process_mesh = forward_op_process_mesh
716 717

            # var 
Z
zhaoyingli 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
            for input_name in grad_op.input_arg_names:
                input_var = vars[input_name]
                ref_dims_mapping = None
                if "@GRAD" in input_name:
                    forward_name = _get_forward_varname_from_grad_varname(
                        input_name)
                    ref_dims_mapping = forward_op_dist_attr.get_output_dims_mapping(
                        forward_name)
                else:
                    if forward_op_dist_attr.get_input_dims_mapping(input_name):
                        ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                            input_name)
                    else:
                        ref_dims_mapping = forward_op_dist_attr.get_output_dims_mapping(
                            input_name)

                assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
                    input_var.name)
                grad_op_dist_attr.set_input_dims_mapping(input_name,
                                                         ref_dims_mapping)

739 740 741 742 743
            for output_name in grad_op.desc.output_names():
                assert len(grad_op.desc.output(output_name)) in [0, 1]
                if _is_grad_var_name(output_name):
                    input_name = _get_forward_varname_from_grad_varname(
                        output_name)
744
                else:
745 746 747 748 749
                    assert grad_op.type in [
                        "cast", "c_identity", "c_allreduce_sum"
                    ]
                    input_name = "X"
                assert input_name in forward_op.desc.input_names(
Z
zhaoyingli 已提交
750
                ), "var [{}] in op [{}]'s output but could not find [{}] in its forward op".format(
751 752 753 754
                    output_name, grad_op.type, input_name)
                if len(grad_op.desc.output(output_name)) == 1:
                    # tensor dist attr
                    output_var = vars[grad_op.desc.output(output_name)[0]]
Z
zhaoyingli 已提交
755 756 757 758 759
                    forward_name = _get_forward_varname_from_grad_varname(
                        output_var.name)
                    ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                        forward_name)

760 761 762 763 764
                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = forward_op_process_mesh
                    dist_context.set_tensor_dist_attr_for_program(
                        output_var, output_var_dist_attr)
765

766 767
                    grad_op_dist_attr.set_output_dims_mapping(output_var.name,
                                                              ref_dims_mapping)
768

769 770
            dist_context.set_op_dist_attr_for_program(grad_op,
                                                      grad_op_dist_attr)
771

772
        # only sum op for merge mutiple version grad has no a corresponding mapping in grad_op_id_to_op_id
773 774 775 776 777 778 779 780 781
        else:
            assert grad_op.type == "sum", "got unexpect op [{}]".format(
                str(grad_op.type))
            assert all(map(_is_grad_var_name, grad_op.input_arg_names))
            assert len(grad_op.output_arg_names) == 1

            ref_forward_var_name = _get_forward_varname_from_grad_varname(
                grad_op.output_arg_names[0])
            forward_var = vars[ref_forward_var_name]
782 783 784 785
            ref_forward_var_dims_mapping = dist_context.get_tensor_dist_attr_for_program(
                forward_var).dims_mapping
            ref_forward_var_process_mesh = dist_context.get_tensor_dist_attr_for_program(
                forward_var).process_mesh
786 787

            # output
788 789 790 791 792
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.dims_mapping = ref_forward_var_dims_mapping
            tensor_dist_attr.process_mesh = ref_forward_var_process_mesh
            dist_context.set_tensor_dist_attr_for_program(
                vars[grad_op.output_arg_names[0]], tensor_dist_attr)
793 794

            # op
795 796
            grad_op_dist_attr = OperatorDistributedAttribute()
            grad_op_dist_attr.process_mesh = ref_forward_var_process_mesh
797 798 799
            for var_name in grad_op.input_arg_names:
                assert _get_forward_varname_from_grad_varname(
                    var_name) == ref_forward_var_name
800
                grad_op_dist_attr.set_input_dims_mapping(
801
                    var_name, ref_forward_var_dims_mapping)
802

803 804 805 806
            grad_op_dist_attr.set_output_dims_mapping(
                grad_op.output_arg_names[0], ref_forward_var_dims_mapping)
            dist_context.set_op_dist_attr_for_program(grad_op,
                                                      grad_op_dist_attr)
807 808 809 810 811 812 813 814 815 816


def complete_update_annotation(auto_parallel_main_prog, dist_context):
    """Complete the annotation of vars and ops in the update phase for parallel program."""

    if dist_context is None:
        dist_context = get_default_distributed_context()

    ops = list(auto_parallel_main_prog.global_block().ops)
    vars = auto_parallel_main_prog.global_block().vars
817
    learning_rate_completed = False
818 819 820 821 822

    for idx in range(len(ops)):

        # complete the annotation of the optimizer op.
        # TODO to add attribute for moment var
823 824 825 826 827
        op = ops[idx]
        if int(op.attr('op_role')) == int(OpRole.Optimize):

            if "Grad" in op.input_names and "Param" in ops[idx].input_names:
                assert len(op.input(
828
                    "Param")) == 1, "Only support one-to-one now."
829
                assert len(op.input(
830
                    "Grad")) == 1, "Only support one-to-one now."
831 832 833
                param = vars[op.input("Param")[0]]
                grad_var = vars[op.input("Grad")[0]]

834
                param_dist_attr = dist_context.get_tensor_dist_attr_for_program(
835 836
                    param)
                assert param_dist_attr is not None
837 838
                ref_process_mesh = dist_context.get_tensor_dist_attr_for_program(
                    param).process_mesh
839
                assert ref_process_mesh is not None
840 841
                ref_dims_mapping = dist_context.get_tensor_dist_attr_for_program(
                    param).dims_mapping
842
                assert ref_dims_mapping is not None
843 844 845 846 847 848 849 850
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = ref_process_mesh
                op_dist_attr.set_input_dims_mapping(grad_var.name,
                                                    ref_dims_mapping)
                op_dist_attr.set_input_dims_mapping(param.name,
                                                    ref_dims_mapping)
                op_dist_attr.set_output_dims_mapping(param.name,
                                                     ref_dims_mapping)
851
                learning_var = vars[op.input("LearningRate")[0]]
852 853
                op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
                op_dist_attr.set_output_dims_mapping(learning_var.name, [-1])
854 855 856

                if not learning_rate_completed:
                    learning_rate_completed = True
857 858 859 860 861
                    var_dist_attr = TensorDistributedAttribute()
                    var_dist_attr.process_mesh = ref_process_mesh
                    var_dist_attr.dims_mapping = [-1]
                    dist_context.set_tensor_dist_attr_for_program(learning_var,
                                                                  var_dist_attr)
862 863 864 865 866 867 868 869 870 871 872 873

                for input_name in op.desc.input_names():

                    if input_name in [
                            'Param', 'Grad', 'LearningRate', "SkipUpdate",
                            "Beta1Tensor", "Beta2Tensor", "EpsilonTensor",
                            "MasterParam"
                    ]:
                        continue

                    assert len(op.desc.input(input_name)) == 1
                    input_var = vars[op.desc.input(input_name)[0]]
874
                    input_var_attr = TensorDistributedAttribute()
875 876

                    if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
877 878 879 880 881
                        input_var_attr.dims_mapping = [-1]
                        op_dist_attr.set_input_dims_mapping(input_var.name,
                                                            [-1])
                        op_dist_attr.set_output_dims_mapping(input_var.name,
                                                             [-1])
882 883
                    else:
                        assert "Moment" in input_name
884 885 886 887 888 889 890 891
                        input_var_attr.dims_mapping = ref_dims_mapping
                        op_dist_attr.set_input_dims_mapping(input_var.name,
                                                            ref_dims_mapping)
                        op_dist_attr.set_output_dims_mapping(input_var.name,
                                                             ref_dims_mapping)

                    input_var_attr.process_mesh = ref_process_mesh
                    dist_context.set_tensor_dist_attr_for_program(
892 893
                        input_var, input_var_attr)

894
                dist_context.set_op_dist_attr_for_program(op, op_dist_attr)
895
                continue