math_op_patch.py 18.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
24
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
25

26
_supported_int_dtype_ = [
27
    core.VarDesc.VarType.BOOL,
28 29 30 31 32 33 34
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

35 36
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

37 38 39 40 41 42 43
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
44
    "__div__": "A / B",
45
    "__truediv__": "A / B",
46
    "__rdiv__": "A /= B",
47 48 49 50 51
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
52
    "__matmul__": "A @ B",
53 54 55 56 57 58 59 60
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

61 62
_already_patch_variable = False

Y
Yang Yu 已提交
63 64

def monkey_patch_variable():
65

Y
Yang Yu 已提交
66
    def unique_tmp_name():
Y
Yu Yang 已提交
67
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
68 69 70 71 72 73 74 75

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

76
    def current_block(var):
77
        return var.block.program.current_block()
78 79 80 81 82

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
83 84
    def create_tensor(block, value, dtype, shape):
        value = float(value)
85
        var = create_new_tmp_var(block, dtype)
86 87 88 89 90 91 92 93 94
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
95
        var.stop_gradient = True
Y
Yang Yu 已提交
96 97
        return var

Y
Yang Yu 已提交
98 99 100
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
101 102 103
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
104 105
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
106
        batch_dim = -1
107
        out_shape = []
108 109
        for i, d in enumerate(ref_var.shape):
            if d < 0:
110 111 112 113 114 115 116
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
117
        assert batch_dim != -1
118 119 120 121 122 123 124 125 126 127
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
128 129

        var.stop_gradient = True
Y
Yang Yu 已提交
130 131
        return var

132 133
    @static_only
    def cpu(self):
F
feifei-111 已提交
134 135 136 137
        """
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
138 139 140 141 142
        """
        return self

    @static_only
    def cuda(self):
F
feifei-111 已提交
143 144 145 146
        """
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
147 148 149
        """
        return self

F
feifei-111 已提交
150 151 152 153 154 155 156 157 158 159 160 161
    @static_only
    def place(self):
        """
        Variable don't have 'place' interface in static mode
        But this interface can greatly facilitate dy2static.
        So we give a warnning here and return None.
        """
        warnings.warn(
            "Variable do not have 'place' interface for static mode, try not to use it. None will be returned."
        )
        return None

Y
Yang Yu 已提交
162 163
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
164 165 166
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
167
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
168

Y
Yang Yu 已提交
169
        Args:
J
Jiabin Yang 已提交
170

Y
Yang Yu 已提交
171
            self(Variable): The source variable
J
Jiabin Yang 已提交
172 173

            dtype: The target data type
Y
Yang Yu 已提交
174 175

        Returns:
J
Jiabin Yang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
206
        """
207 208
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
209 210 211 212 213 214 215
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
216
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
217 218
        return out

219 220 221 222 223 224 225 226
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
227 228 229 230 231 232 233 234 235
            if in_declarative_mode():
                """ in dy2static mode, x may be tensorable values such as int, float, np.array
                """
                from paddle.tensor.creation import to_tensor
                var = to_tensor(var)
            else:
                raise TypeError(
                    "Required input var should be Variable, but received {}".
                    format(type(var)))
236 237
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
238 239
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
240 241
        array_write(x=var, i=array_length(self), array=self)

242 243 244 245 246 247 248 249 250 251 252 253
    @static_only
    def _item(self):
        """ 
        In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self. 
        It will check that the shape must be a 1-D tensor
        """
        if len(self.shape) > 1:
            raise TypeError(
                "Required input var should be 1-D Variable, but received {}".
                format(self.shape))
        return self

254 255 256
    @static_only
    def pop(self, *args):
        """
257 258 259 260 261 262 263 264 265
        The type variable must be LoD Tensor Array.
        When self is LoDTensorArray, calling pop is similar to Python's pop on list. 
        This interface is used to simplify dygraph to static graph operations.

        Args:
            self(Variable): The source variable, which must be LOD_TENSOR_ARRAY
            *args: optional, a int means index.
        Returns:
            Variable: self[index]
266 267 268 269 270 271 272 273
        """
        from paddle.fluid.dygraph.dygraph_to_static.convert_operators import _run_paddle_pop
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
        return _run_paddle_pop(self, *args)

274
    def _scalar_op_(var, scale, bias):
275 276
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
277 278 279 280 281 282 283
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
284 285
        return out

286
    def _neg_(var):
287
        return _scalar_op_(var, -1.0, 0.0)
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

311 312
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
313

314 315
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
316

317 318
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
319

320 321
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
322

323 324 325
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

326 327 328 329
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
330

Y
Yang Yu 已提交
331
        def __impl__(self, other_var):
332 333 334 335 336 337 338 339 340
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
341
                    return scalar_method(self, other_var)
342 343 344 345 346 347
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
348 349 350
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
351 352 353 354 355
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
356
                # but only +, -, *, / can use this method
357 358 359 360 361
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
362

363
            # 2. create variable for scalar
Y
Yang Yu 已提交
364 365 366 367 368 369 370 371 372
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
373 374 375 376
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
377 378 379 380
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
381
                    # add fill_op to current_block
382 383 384
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
385

386
            # 3. unify right var type to left var
Y
Yang Yu 已提交
387 388 389 390 391 392 393 394
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

395 396 397 398 399 400
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

401 402
            axis = -1
            if other_var.shape[0] == -1:
403 404 405
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
406
                warnings.warn(
407 408 409 410
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
411 412
                       op_type, op_type, EXPRESSION_MAP[method_name]),
                    category=DeprecationWarning)
413 414 415 416 417 418 419
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
420 421 422 423 424 425 426 427
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
428
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
429 430 431 432 433 434 435

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

436 437 438 439
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
440 441
        ('cpu', cpu),
        ('cuda', cuda),
F
feifei-111 已提交
442
        ('place', place),
443
        ('append', append),
444
        ('item', _item),
445
        ('pop', pop),
446 447 448
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
449 450
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
451 452 453
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
454 455 456 457 458 459
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
460 461 462
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
463 464 465 466 467
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
468 469
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
470 471
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
472 473 474 475
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
476 477
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
478 479
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
480 481
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
499
        for method_name in paddle.tensor.tensor_method_func:
500 501 502 503
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

504 505 506 507
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

508
    _already_patch_variable = True