conv_fusion_op.cc 7.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/operators/conv_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

// This fused conv follows the equation:
//   y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
//   here, y is Output,
//         x is Input,
//         z is ResidualData,
//         bias is Bias
Q
qingqing01 已提交
31 32
// When `split_channels` is set, y will be splitted into multiple outputs,
// each output has split_channels[i] number of channels.
Q
qingqing01 已提交
33 34 35 36 37 38 39 40
class Conv2DFusionOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<std::string>(
        "activation",
        "The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
        "'relux' , 'tanh', 'band_pass'")
        .SetDefault("relu");
Q
qingqing01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    AddAttr<std::vector<int>>(
        "split_channels",
        "When `split_channels` are set, there will be multiple outputs, the "
        "output size is equal to the number of `split_channels`.")
        .SetDefault({});
    AddOutput("Outputs",
              "This Outputs is used when setting `split_channels`."
              "Usually used to fuse conv with same input and same filter size, "
              "padding, stride, dilation size.")
        .AsDuplicable()
        .AsDispensable();
    AddInput("AlgoCache",
             "The cache of convolution algorithm, a RAW type variable.")
        .AsDispensable();
    AddAttr<int>(
        "search_times",
        "The number of exhaustive search times for convolution algorithm.")
        .SetDefault(-1);
Q
qingqing01 已提交
59 60
  }
};
Q
qingqing01 已提交
61 62 63 64

class Conv2DFusionOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
65 66 67 68
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      "Input(Input) of ConvOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                      "Input(Filter) of ConvOp should not be null.");
Q
qingqing01 已提交
69 70 71 72 73 74 75
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
76 77 78
    std::string padding_algorithm =
        ctx->Attrs().Get<std::string>("padding_algorithm");
    int groups = ctx->Attrs().Get<int>("groups");
Q
qingqing01 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    PADDLE_ENFORCE_EQ(
        in_dims.size() == 4 || in_dims.size() == 5, true,
        "ShapeError: Conv_fusion input should be 4-D or 5-D tensor. But "
        "received: %u-D Tensor,"
        "the shape of Conv_fusion input is [%s]",
        in_dims.size(), in_dims);

    PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                      "ShapeError: Conv_fusion input dimension and filter "
                      "dimension should be the "
                      "equal."
                      "But received: the shape of Conv_fusion input is [%s], "
                      "input dimension of Conv_fusion "
                      "input is [%d],"
                      "the shape of filter is [%s],  the filter dimension of "
                      "Conv_fusion is [%d]",
                      in_dims, in_dims.size(), filter_dims, filter_dims.size());

    int in_sub_stride_size = in_dims.size() - strides.size();
    PADDLE_ENFORCE_EQ(
        in_dims.size() - strides.size() == 2U, true,
        "ShapeError: the dimension of input minus the dimension of "
        "stride must be euqal to 2."
        "But received: the dimension of input minus the dimension "
        "of stride is [%d], the"
        "input dimension of Conv_fusion is [%d], the shape of Conv_fusion "
        "input "
        "is [%s], the stride"
        "dimension of Conv_fusion is [%d]",
        in_sub_stride_size, in_dims.size(), in_dims, strides.size());

    const auto input_channels = in_dims[1];

    PADDLE_ENFORCE_EQ(
        input_channels, filter_dims[1] * groups,
        "ShapeError: The number of input channels should be equal to filter "
        "channels * groups. But received: the input channels is [%d], the shape"
        "of input is [%s], the filter channel is [%d], the shape of filter is "
        "[%s],"
        "the groups is [%d]",
        in_dims[1], in_dims, filter_dims[1], filter_dims, groups);
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % groups, 0,
        "ShapeError: The number of output channels should be divided by groups."
        "But received: the output channels is [%d], the shape of filter is [%s]"
        "(the first dimension of filter is output channel), the groups is [%d]",
        filter_dims[0], filter_dims, groups);

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int64_t> output_shape({in_dims[0]});
    output_shape.push_back(filter_dims[0]);

    for (size_t i = 0; i < in_data_dims.size(); ++i) {
      if ((!ctx->IsRuntime()) &&
          (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(
            ConvOutputSize(in_data_dims[i], filter_dims[i + 2], dilations[i],
                           paddings[2 * i], paddings[2 * i + 1], strides[i]));
      }
Q
qingqing01 已提交
149
    }
150

151 152
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                      "Output(Output) of ConvOp should not be null.");
153 154
    ctx->SetOutputDim("Output", framework::make_ddim(output_shape));

Q
qingqing01 已提交
155 156 157
    std::vector<int> channels =
        ctx->Attrs().Get<std::vector<int>>("split_channels");
    if (channels.size()) {
158 159
      PADDLE_ENFORCE_EQ(ctx->HasOutputs("Outputs"), true,
                        "Output(Outputs) of ConvOp should not be null.");
Q
qingqing01 已提交
160 161 162
      std::vector<framework::DDim> oshapes;
      oshapes.reserve(channels.size());
      for (size_t i = 0; i < channels.size(); ++i) {
163 164
        oshapes.push_back(
            {output_shape[0], channels[i], output_shape[2], output_shape[3]});
Q
qingqing01 已提交
165 166 167 168 169 170
      }
      ctx->SetOutputsDim("Outputs", oshapes);
    }
  }
};

Q
qingqing01 已提交
171 172 173 174 175 176
// TODO(qingqing): add gradient operator for conv2d_fusion

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
177 178 179 180 181
REGISTER_OPERATOR(
    conv2d_fusion, ops::ConvOp, ops::Conv2DFusionOpMaker,
    ops::Conv2DFusionOpInferShape, ops::ConvOpInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);