bfloat16.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <stdint.h>

#include <cmath>
#include <cstring>
#include <iostream>
#include <limits>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif

#if defined(__CUDACC__) && CUDA_VERSION >= 11000
#define PADDLE_CUDA_BF16
#include <cuda_bf16.h>
#endif

#if !defined(_WIN32)
#define PADDLE_ALIGN(x) __attribute__((aligned(x)))
#else
#define PADDLE_ALIGN(x) __declspec(align(x))
#endif

#if (defined(__CUDACC__) || defined(__HIPCC__))
#define HOSTDEVICE __host__ __device__
#define DEVICE __device__
#define HOST __host__
#else
#define HOSTDEVICE
#define DEVICE
#define HOST
#endif

49
namespace phi {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
namespace dtype {

struct PADDLE_ALIGN(2) bfloat16 {
 public:
  uint16_t x;

  // Constructors
  bfloat16() = default;
  bfloat16(const bfloat16& o) = default;
  bfloat16& operator=(const bfloat16& o) = default;
  bfloat16(bfloat16&& o) = default;
  bfloat16& operator=(bfloat16&& o) = default;
  ~bfloat16() = default;

  HOSTDEVICE inline explicit bfloat16(float val) {
#ifdef PADDLE_WITH_HIP
    uint32_t res = 0;
    uint32_t* tempRes;
    // We should be using memcpy in order to respect the strict aliasing rule
    // but it fails in the HIP environment.
    tempRes = reinterpret_cast<uint32_t*>(&val);
    res = *tempRes;
    x = res >> 16;
#else
#if defined(PADDLE_CUDA_BF16)
    __nv_bfloat16 tmp = __float2bfloat16(val);
    x = *reinterpret_cast<uint16_t*>(&tmp);
#else
    std::memcpy(&x, reinterpret_cast<char*>(&val) + 2, 2);
#endif
#endif
  }

#if defined(PADDLE_CUDA_BF16)
  HOSTDEVICE inline explicit bfloat16(const __nv_bfloat16& val) {
85
    x = *reinterpret_cast<const unsigned short*>(&val);  // NOLINT
86 87 88 89 90 91 92 93 94 95
  }
#endif

  template <class T>
  HOSTDEVICE inline explicit bfloat16(const T& val)
      : x(bfloat16(static_cast<float>(val)).x) {}

// Assignment operators
#if defined(PADDLE_CUDA_BF16)
  HOSTDEVICE inline bfloat16& operator=(const __nv_bfloat16& val) {
96
    x = *reinterpret_cast<const unsigned short*>(&val);  // NOLINT
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    return *this;
  }
#endif

  HOSTDEVICE inline bfloat16& operator=(bool b) {
    x = b ? 0x3f80 : 0;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(int8_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(uint8_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(int16_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(uint16_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(int32_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(uint32_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(int64_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(uint64_t val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(float val) {
    x = bfloat16(val).x;
    return *this;
  }

  HOSTDEVICE inline bfloat16& operator=(double val) {
    x = bfloat16(val).x;
    return *this;
  }

  // Conversion opertors
  HOSTDEVICE inline explicit operator float() const {
#ifdef PADDLE_WITH_HIP
    uint32_t res = 0;
    // We should be using memcpy in order to respect the strict aliasing rule
    // but it fails in the HIP environment.
    uint16_t temp = x;
    uint16_t* temp_ptr = reinterpret_cast<uint16_t*>(&temp);
    res = *temp_ptr;
    return res;
#else
#ifdef PADDLE_CUDA_BF16
    return __bfloat162float(*reinterpret_cast<const __nv_bfloat16*>(&x));
#else
    float val = 0.f;
    uint16_t temp = x;
    std::memcpy(
        reinterpret_cast<char*>(&val) + 2, reinterpret_cast<char*>(&temp), 2);
    return val;
#endif
#endif
  }

#ifdef PADDLE_CUDA_BF16
  HOSTDEVICE inline explicit operator __nv_bfloat16() const {
    return *reinterpret_cast<const __nv_bfloat16*>(&x);
  }
#endif

  HOSTDEVICE inline explicit operator bool() const { return (x & 0x7fff) != 0; }

  HOSTDEVICE inline explicit operator int8_t() const {
    return static_cast<int8_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator uint8_t() const {
    return static_cast<uint8_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator int16_t() const {
    return static_cast<int16_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator uint16_t() const {
    return static_cast<uint16_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator int32_t() const {
    return static_cast<int32_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator uint32_t() const {
    return static_cast<uint32_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator int64_t() const {
    return static_cast<int64_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator uint64_t() const {
    return static_cast<uint64_t>(static_cast<float>(*this));
  }

  HOSTDEVICE inline explicit operator double() const {
    return static_cast<double>(static_cast<float>(*this));
  }
};

HOSTDEVICE inline bfloat16 operator+(const bfloat16& a, const bfloat16& b) {
  return bfloat16(static_cast<float>(a) + static_cast<float>(b));
}

HOSTDEVICE inline bfloat16 operator-(const bfloat16& a, const bfloat16& b) {
  return bfloat16(static_cast<float>(a) - static_cast<float>(b));
}

HOSTDEVICE inline bfloat16 operator*(const bfloat16& a, const bfloat16& b) {
  return bfloat16(static_cast<float>(a) * static_cast<float>(b));
}

HOSTDEVICE inline bfloat16 operator/(const bfloat16& a, const bfloat16& b) {
  return bfloat16(static_cast<float>(a) / static_cast<float>(b));
}

HOSTDEVICE inline bfloat16 operator-(const bfloat16& a) {
  bfloat16 res;
  res.x = a.x ^ 0x8000;
  return res;
}

HOSTDEVICE inline bfloat16& operator+=(bfloat16& a,  // NOLINT
                                       const bfloat16& b) {
  a = bfloat16(static_cast<float>(a) + static_cast<float>(b));
  return a;
}

HOSTDEVICE inline bfloat16& operator-=(bfloat16& a,  // NOLINT
                                       const bfloat16& b) {
  a = bfloat16(static_cast<float>(a) - static_cast<float>(b));
  return a;
}

HOSTDEVICE inline bfloat16& operator*=(bfloat16& a,  // NOLINT
                                       const bfloat16& b) {
  a = bfloat16(static_cast<float>(a) * static_cast<float>(b));
  return a;
}

HOSTDEVICE inline bfloat16& operator/=(bfloat16& a,  // NOLINT
                                       const bfloat16& b) {
  a = bfloat16(static_cast<float>(a) / static_cast<float>(b));
  return a;
}

HOSTDEVICE inline bfloat16 raw_uint16_to_bfloat16(uint16_t a) {
  bfloat16 res;
  res.x = a;
  return res;
}

// Comparison operators
HOSTDEVICE inline bool operator==(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) == static_cast<float>(b);
}

HOSTDEVICE inline bool operator!=(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) != static_cast<float>(b);
}

HOSTDEVICE inline bool operator<(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) < static_cast<float>(b);
}

HOSTDEVICE inline bool operator<=(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) <= static_cast<float>(b);
}

HOSTDEVICE inline bool operator>(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) > static_cast<float>(b);
}

HOSTDEVICE inline bool operator>=(const bfloat16& a, const bfloat16& b) {
  return static_cast<float>(a) >= static_cast<float>(b);
}

HOSTDEVICE inline bool(isnan)(const bfloat16& a) {
  return (a.x & 0x7FFF) > 0x7F80;
}

HOSTDEVICE inline bool(isinf)(const bfloat16& a) {
  return (a.x & 0x7F80) == 0x7F80;
}

HOSTDEVICE inline bool(isfinite)(const bfloat16& a) {
  return !((isnan)(a)) && !((isinf)(a));
}

inline std::ostream& operator<<(std::ostream& os, const bfloat16& a) {
314
  os << static_cast<float>(a);
315 316 317 318
  return os;
}

}  // namespace dtype
319
}  // namespace phi
320 321 322 323

namespace std {

template <>
324 325 326
struct is_pod<phi::dtype::bfloat16> {
  static const bool value = is_trivial<phi::dtype::bfloat16>::value &&
                            is_standard_layout<phi::dtype::bfloat16>::value;
327 328 329
};

template <>
330
struct is_floating_point<phi::dtype::bfloat16>
331 332 333
    : std::integral_constant<
          bool,
          std::is_same<
334 335
              phi::dtype::bfloat16,
              typename std::remove_cv<phi::dtype::bfloat16>::type>::value> {};
336
template <>
337
struct is_signed<phi::dtype::bfloat16> {
338 339 340 341
  static const bool value = true;
};

template <>
342
struct is_unsigned<phi::dtype::bfloat16> {
343 344 345
  static const bool value = false;
};

346 347
inline bool isnan(const phi::dtype::bfloat16& a) {
  return phi::dtype::isnan(a);
348 349
}

350 351
inline bool isinf(const phi::dtype::bfloat16& a) {
  return phi::dtype::isinf(a);
352 353 354
}

template <>
355
struct numeric_limits<phi::dtype::bfloat16> {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  static const bool is_specialized = true;
  static const bool is_signed = true;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const bool has_infinity = true;
  static const bool has_quiet_NaN = true;
  static const bool has_signaling_NaN = true;
  static const float_denorm_style has_denorm = denorm_present;
  static const bool has_denorm_loss = false;
  static const std::float_round_style round_style = std::round_to_nearest;
  static const bool is_iec559 = false;
  static const bool is_bounded = false;
  static const bool is_modulo = false;
  static const int digits = 8;
  static const int digits10 = 2;
  static const int max_digits10 = 9;
  static const int radix = 2;
  static const int min_exponent = -125;
  static const int min_exponent10 = -37;
  static const int max_exponent = 128;
  static const int max_exponent10 = 38;
  static const bool traps = true;
  static const bool tinyness_before = false;

380
  HOSTDEVICE static phi::dtype::bfloat16(min)() {
381
    return phi::dtype::raw_uint16_to_bfloat16(0x007f);
382
  }
383
  HOSTDEVICE static phi::dtype::bfloat16 lowest() {
384
    return phi::dtype::raw_uint16_to_bfloat16(0xff7f);
385
  }
386
  HOSTDEVICE static phi::dtype::bfloat16(max)() {
387
    return phi::dtype::raw_uint16_to_bfloat16(0x7f7f);
388
  }
389
  HOSTDEVICE static phi::dtype::bfloat16 epsilon() {
390
    return phi::dtype::raw_uint16_to_bfloat16(0x3400);
391
  }
392
  HOSTDEVICE static phi::dtype::bfloat16 round_error() {
393
    return phi::dtype::bfloat16(0.5);
394
  }
395
  HOSTDEVICE static phi::dtype::bfloat16 infinity() {
396
    return phi::dtype::raw_uint16_to_bfloat16(0x7f80);
397
  }
398
  HOSTDEVICE static phi::dtype::bfloat16 quiet_NaN() {
399
    return phi::dtype::raw_uint16_to_bfloat16(0xffc1);
400
  }
401
  HOSTDEVICE static phi::dtype::bfloat16 signaling_NaN() {
402
    return phi::dtype::raw_uint16_to_bfloat16(0xff81);
403
  }
404
  HOSTDEVICE static phi::dtype::bfloat16 denorm_min() {
405
    return phi::dtype::raw_uint16_to_bfloat16(0x0001);
406 407 408 409
  }
};

}  // namespace std