miopen_helper.h 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <vector>

#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/macros.h"

// MIOPEN do not have epslion definition
#define CUDNN_BN_MIN_EPSILON 1e-05

DECLARE_bool(cudnn_deterministic);

namespace paddle {
namespace platform {
inline const char* miopenGetErrorString(miopenStatus_t status) {
  switch (status) {
    case miopenStatusSuccess:
      return "miopenStatusSuccess";
    case miopenStatusNotInitialized:
      return "miopenStatusNotInitialized";
    case miopenStatusAllocFailed:
      return "miopenStatusAllocFailed";
    case miopenStatusBadParm:
      return "miopenStatusBadParm";
    case miopenStatusInternalError:
      return "miopenStatusInternalError";
    case miopenStatusInvalidValue:
      return "miopenStatusInvalidValue";
    case miopenStatusUnknownError:
      return "miopenStatusUnknownError";
    case miopenStatusNotImplemented:
      return "miopenStatusNotImplemented";
    default:
      return "Unknown miopen error number";
  }
}

// no use, but will have compiling error if not defined
#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNDHWC,  // add, liyamei
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
  kAverageExclusive,
  kAverageInclusive,
};

enum class ActivationMode {
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

inline miopenPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return miopenPoolingMax;
    case PoolingMode::kAverageExclusive:
      return miopenPoolingAverage;
    case PoolingMode::kAverageInclusive:
      return miopenPoolingAverageInclusive;
    case PoolingMode::kMaximum:
      return miopenPoolingMax;
    default:
      PADDLE_THROW(
          platform::errors::Unimplemented("Unexpected MIOPEN pooling mode."));
  }
}

inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unknown MIOPEN activation string: %s.", str));
  }
}

template <typename T>
class CudnnDataType;

template <>
class CudnnDataType<float16> {
 public:
  static const miopenDataType_t type = miopenHalf;
  // The scaling param type is float for HALF and FLOAT tensors
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

template <>
class CudnnDataType<bfloat16> {
 public:
  static const miopenDataType_t type = miopenBFloat16;
  // The scaling param type is float for HALF and FLOAT tensors
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

template <>
class CudnnDataType<float> {
 public:
  static const miopenDataType_t type = miopenFloat;
  using ScalingParamType = const float;
  using BatchNormParamType = float;
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
};

inline miopenTensorFormat_t GetCudnnTensorFormat(const DataLayout& order) {
  switch (order) {
    case DataLayout::kNHWC:
      return MIOPEN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return MIOPEN_TENSOR_NCHW;
    case DataLayout::kNCDHW:
      return MIOPEN_TENSOR_NCHW;
    case DataLayout::kNDHWC:
      return MIOPEN_TENSOR_NHWC;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "MIOPEN has no equivalent dataLayout for input order."));
  }
  return MIOPEN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
196
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
197 198
  }
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
199
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  }

  inline miopenTensorDescriptor_t descriptor(const miopenTensorFormat_t format,
                                             const miopenDataType_t type,
                                             const std::vector<int>& dims,
                                             const int groups = 1) {
    // the format is not used now, will add later
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    // Update tensor descriptor dims setting if groups > 1
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }

    // MIOPEN ONLY support data layout of NCHW
    PADDLE_ENFORCE_EQ(format, MIOPEN_TENSOR_NCHW,
                      platform::errors::InvalidArgument(
                          "format should ONLY be NCHW in MIOPEN."));
    if (dims.size() == 4) {
224
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
225 226 227 228
          desc_, type, dims_with_group.size(),
          const_cast<int*>(dims_with_group.data()),
          const_cast<int*>(strides.data())));
    } else if (dims.size() == 5) {
229
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
          desc_, type, dims_with_group.size(),
          const_cast<int*>(dims_with_group.data()),
          const_cast<int*>(strides.data())));
    }
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const DataLayout& order,
                                             const std::vector<int>& dims,
                                             const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
  }

  inline miopenTensorDescriptor_t descriptor(const miopenDataType_t miopen_type,
                                             const std::vector<int>& dim,
                                             const std::vector<int>& stride) {
248
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        desc_, miopen_type, dim.size(), const_cast<int*>(dim.data()),
        const_cast<int*>(stride.data())));
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const std::vector<int>& dim,
                                             const std::vector<int>& stride) {
    return descriptor(CudnnDataType<T>::type, dim, stride);
  }

  inline miopenTensorDescriptor_t desc() { return desc_; }

 private:
  miopenTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedDropoutDescriptor {
 public:
  ScopedDropoutDescriptor() {
270
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateDropoutDescriptor(&desc_));
271 272
  }
  ~ScopedDropoutDescriptor() PADDLE_MAY_THROW {
273
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyDropoutDescriptor(desc_));
274 275 276 277 278 279 280 281 282
  }

  inline miopenDropoutDescriptor_t descriptor(const miopenHandle_t& handle,
                                              const platform::Place& place,
                                              bool initialized,
                                              float dropout_prob_,
                                              framework::Tensor* dropout_state_,
                                              int seed, size_t state_size) {
    if (dropout_state_ == nullptr) {  // for no dropout or test
283
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetDropoutDescriptor(
284 285 286 287 288 289
          desc_, handle, 0 /* dropout */, nullptr, 0 /* state_size */,
          0 /* seed */, false, false, MIOPEN_RNG_PSEUDO_XORWOW));
      return desc_;
    }
    auto* dropout_state_data = dropout_state_->data<uint8_t>();
    if (!initialized) {
290
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetDropoutDescriptor(
291 292 293 294 295
          desc_, handle, dropout_prob_, dropout_state_data, state_size, seed,
          false, false, MIOPEN_RNG_PSEUDO_XORWOW));
    } else {
      auto dropout_state_dims = dropout_state_->dims();
      state_size = dropout_state_dims[0];
296
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenRestoreDropoutDescriptor(
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
          desc_, handle, dropout_prob_, dropout_state_data, state_size, 0,
          false, false, MIOPEN_RNG_PSEUDO_XORWOW));
    }
    return desc_;
  }
  inline miopenDropoutDescriptor_t desc() { return desc_; }

 private:
  miopenDropoutDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedDropoutDescriptor);
};

class ScopedRNNDescriptor {
 public:
  ScopedRNNDescriptor() {
312
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateRNNDescriptor(&desc_));
313 314
  }
  ~ScopedRNNDescriptor() PADDLE_MAY_THROW {
315
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyRNNDescriptor(desc_));
316 317 318 319 320 321 322 323 324 325 326 327
  }

  inline miopenRNNDescriptor_t desc() { return desc_; }

 private:
  miopenRNNDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedRNNDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
328
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateTensorDescriptor(&desc_));
329 330
  }
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
331
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyTensorDescriptor(desc_));
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  }

  inline miopenTensorDescriptor_t descriptor(const miopenTensorFormat_t format,
                                             const miopenDataType_t type,
                                             const std::vector<int>& kernel,
                                             const int groups = 1) {
    // filter layout: MCHW(MCDHW), where M is the number of
    // output image channels, C is the number of input image channels,
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
    std::vector<int> stride_dim(kernel_with_group.size());
    stride_dim.push_back(1);
    for (int k = kernel_with_group.size() - 2; k >= 0; k--) {
      stride_dim[k] = stride_dim[k + 1] * kernel_with_group[k + 1];
    }
352
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetTensorDescriptor(
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        desc_, type, kernel_with_group.size(),
        const_cast<int*>(kernel_with_group.data()),
        const_cast<int*>(stride_dim.data())));
    return desc_;
  }

  template <typename T>
  inline miopenTensorDescriptor_t descriptor(const DataLayout& order,
                                             const std::vector<int>& kernel,
                                             const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
                      kernel, groups);
  }

  inline miopenTensorDescriptor_t desc() { return desc_; }

 private:
  miopenTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
377
    PADDLE_ENFORCE_GPU_SUCCESS(
378 379 380
        dynload::miopenCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
381
    PADDLE_ENFORCE_GPU_SUCCESS(
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        dynload::miopenDestroyConvolutionDescriptor(desc_));
  }

  inline miopenConvolutionDescriptor_t descriptor(
      miopenDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size(),
                      platform::errors::InvalidArgument(
                          "The size of pads and strides should be equal. But "
                          "received size of pads is %d, size of strides is %d.",
                          pads.size(), strides.size()));
    PADDLE_ENFORCE_EQ(
        pads.size(), dilations.size(),
        platform::errors::InvalidArgument(
            "The size of pads and dilations should be equal. But received size "
            "of pads is %d, size of dilations is %d.",
            pads.size(), dilations.size()));
399
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenInitConvolutionNdDescriptor(
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        desc_, pads.size(), const_cast<int*>(pads.data()),
        const_cast<int*>(strides.data()), const_cast<int*>(dilations.data()),
        miopenConvolution));
    return desc_;
  }

  template <typename T>
  inline miopenConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  miopenConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
421
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreatePoolingDescriptor(&desc_));
422 423
  }
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
424
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyPoolingDescriptor(desc_));
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  }

  inline miopenPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                              const std::vector<int>& kernel,
                                              const std::vector<int>& pads,
                                              const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size(),
                      platform::errors::InvalidArgument(
                          "The size of kernel and pads should be equal. But "
                          "received size of kernel is %d, size of pads is %d.",
                          kernel.size(), pads.size()));
    PADDLE_ENFORCE_EQ(
        kernel.size(), strides.size(),
        platform::errors::InvalidArgument(
            "The size of kernel and strides should be equal. But "
            "received size of kernel is %d, size of strides is %d.",
            kernel.size(), strides.size()));
442
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetNdPoolingDescriptor(
R
ronnywang 已提交
443 444 445
        desc_, GetPoolingMode(mode), kernel.size(),
        const_cast<int*>(kernel.data()), const_cast<int*>(pads.data()),
        const_cast<int*>(strides.data())));
446 447 448 449 450 451 452 453 454 455 456
    return desc_;
  }

 private:
  miopenPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
457
    PADDLE_ENFORCE_GPU_SUCCESS(
458 459 460
        dynload::miopenCreateActivationDescriptor(&desc_));
  }
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
461
    PADDLE_ENFORCE_GPU_SUCCESS(
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        dynload::miopenDestroyActivationDescriptor(desc_));
  }

  template <typename T>
  inline miopenActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    miopenActivationMode_t mode;
    switch (activation_mode) {
      case ActivationMode::kNone:
        mode = miopenActivationPASTHRU;
        break;
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = miopenActivationCLIPPEDRELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = miopenActivationCLIPPEDRELU;
        break;
      case ActivationMode::kRelu:
        mode = miopenActivationRELU;
        break;
      case ActivationMode::kSigmoid:
        mode = miopenActivationLOGISTIC;
        break;
      case ActivationMode::kTanh:
        mode = miopenActivationTANH;
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unrecognized MIOPEN activation mode: %d.",
            static_cast<int>(activation_mode)));
    }
497
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetActivationDescriptor(
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        desc_, mode, relu_ceiling, 0.0, 0.0));
    return desc_;
  }

 private:
  miopenActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_HIP
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
522
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreateCTCLossDescriptor(&desc_));
523 524
  }
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
525
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroyCTCLossDescriptor(desc_));
526 527 528 529
  }

  template <typename T>
  inline miopenCTCLossDescriptor_t descriptor() {
530
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenSetCTCLossDescriptor(
531 532 533 534 535 536 537 538 539 540 541
        desc_, CudnnDataType<T>::type, 0, false));
    return desc_;
  }

 private:
  miopenCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};

}  // namespace platform
}  // namespace paddle