pipeline_parallel.py 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import paddle
import paddle.fluid as fluid
from .meta_parallel_base import MetaParallelBase
17
from .pp_utils.utils import is_float_tensor, _initialize_recompute_hcg
18
from .parallel_layers.pp_layers import PipelineLayer
19 20 21

from ..utils.hybrid_parallel_util import broadcast_mp_parameters
from ..utils.hybrid_parallel_util import broadcast_dp_parameters
22
from ..utils.log_util import logger
23
from ..meta_optimizers.dygraph_optimizer import HybridParallelOptimizer, HybridParallelGradScaler
S
ShenLiang 已提交
24
from .pp_utils import p2p_communication as p2p
25

26 27
__all__ = []

28 29 30

class PipelineParallel(MetaParallelBase):
    def __init__(self, layers, hcg, strategy):
31 32 33
        if not isinstance(layers, PipelineLayer):
            raise TypeError(
                "The Layer should be a derived class of PipelineLayer.")
34 35 36 37 38 39 40 41 42 43 44
        super(PipelineParallel, self).__init__(layers, hcg, strategy)
        self.use_data_parallel = self._hcg.get_data_parallel_world_size() > 1
        self.use_model_parallel = self._hcg.get_model_parallel_world_size() > 1

        self.total_loss = None

        self.micro_batch_size = self._strategy.pipeline_configs[
            'micro_batch_size']
        self.accumulate_steps = self._strategy.pipeline_configs[
            'accumulate_steps']

45 46
        self._using_cache = self._strategy.pipeline_configs['p2p_cache_shape']

47 48
        self.num_stages = self._hcg.get_pipe_parallel_world_size()
        self.stage_id = self._hcg.get_stage_id()
49
        self.pp_group = self._hcg.get_pipe_parallel_group()
50

51
        p2p.initialize_p2p_groups(hcg, self._using_cache)
52

53 54
        _initialize_recompute_hcg(hcg)

55 56 57
        self.is_first_stage = self.stage_id == 0
        self.is_last_stage = (self.stage_id == (self.num_stages - 1))
        self.global_rank = self._hcg.get_global_rank()
58
        self.micro_batch_id = 0
59

60 61
        self._compute_loss = True

62 63 64 65 66 67 68 69
        logger.info("Pipeline Info -- num_stages: {}, stage_id: {}".format(
            self.num_stages, self.stage_id))

        if self.use_model_parallel:
            logger.info("start broadcast mp parameters")
            broadcast_mp_parameters(self._layers, self._hcg)

        if self.use_data_parallel:
70
            logger.info("start broadcast dp parameters")
71
            broadcast_dp_parameters(self._layers, self._hcg)
72

73
    def train_batch(self, data, optimizer, lr_scheduler=None, scaler=None):
74 75
        assert isinstance(optimizer, HybridParallelOptimizer), (
            'optimizer should be HybridParallelOptimizer subclass.')
76 77 78
        if scaler is not None:
            assert isinstance(scaler, HybridParallelGradScaler), (
                'scaler should be HybridParallelGradScaler subclass or None.')
79 80 81
        assert fluid.framework._dygraph_tracer()._has_grad, (
            'Please enable the generation of gradients.')

82 83
        if self.is_first_stage or self.is_last_stage:
            assert data is not None, (
84
                "For the first and the last stage, the data must be set.")
85
        else:
86 87
            data = None

88 89 90
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        self.scaler = scaler
91
        self.data = data
92
        self._compute_loss = True
93

94 95
        self._layers.train()

96 97 98
        # store total loss of entire batch
        self.total_loss = None

99 100
        # store data id for micro_batch
        self.micro_batch_id = 0
101

102 103 104
        # Next, use the 1f1b scheduling strategy.
        # this strategy is inspired by:
        # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/schedules.py
105

106 107 108
        startup_steps = (self.num_stages - self.stage_id - 1)
        startup_steps = min(startup_steps, self.accumulate_steps)
        steady_steps = self.accumulate_steps - startup_steps
109

110 111
        input_buffers = []
        output_buffers = []
112

113 114
        for step_id in range(startup_steps):
            input_tensor = p2p.recv_forward()
115

116 117
            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)
118

119 120
            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)
121

122 123
        if steady_steps > 0:
            input_tensor = p2p.recv_forward()
124

125 126
        for i in range(steady_steps):
            last_iter = (i == (steady_steps - 1))
127

128
            output_tensor = self._forward_step(input_tensor)
129

130
            output_tensor_grad = p2p.send_forward_recv_backward(output_tensor)
131

132 133
            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)
134

135 136
            input_tensor, output_tensor = input_buffers.pop(
                0), output_buffers.pop(0)
137

138 139 140 141 142 143
            input_tensor_grad = self._backward_step(input_tensor, output_tensor,
                                                    output_tensor_grad)

            if last_iter:
                input_tensor = None
                p2p.send_backward(input_tensor_grad)
144
            else:
145
                input_tensor = p2p.send_backward_recv_forward(input_tensor_grad)
146

147 148 149
        for i in range(startup_steps):
            input_tensor = input_buffers.pop(0)
            output_tensor = output_buffers.pop(0)
150

151
            output_tensor_grad = p2p.recv_backward()
152

153 154 155
            input_tensor_grad = self._backward_step(input_tensor, output_tensor,
                                                    output_tensor_grad)
            p2p.send_backward(input_tensor_grad)
156

157
        self._layers.allreduce_shared_weight_gradients()
158

159
        self.train_loss = self._broadcast_final_loss()
160 161 162 163 164

        # optimizer
        self._optimizer_step()
        return self.train_loss

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    def eval_batch(self, data, compute_loss=False):
        self._layers.eval()
        self._compute_loss = compute_loss

        # save data for eval
        self.data = data
        # store data id for micro_batch
        self.micro_batch_id = 0

        # store total loss of entire batch
        self.total_loss = None

        startup_steps = (self.num_stages - self.stage_id - 1)
        startup_steps = min(startup_steps, self.accumulate_steps)
        steady_steps = self.accumulate_steps - startup_steps

        input_buffers = []
        output_buffers = []

        for step_id in range(startup_steps):
            input_tensor = p2p.recv_forward()

            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)

            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)

        if steady_steps > 0:
            input_tensor = p2p.recv_forward()

        for i in range(steady_steps):
            last_iter = (i == (steady_steps - 1))

            output_tensor = self._forward_step(input_tensor)
            p2p.send_forward(output_tensor)

            input_buffers.append(input_tensor)
            output_buffers.append(output_tensor)

            if not last_iter:
                input_tensor = p2p.recv_forward()

        return self.total_loss if self._compute_loss else output_buffers

210 211 212 213 214 215 216
    def _forward_step(self, input_tensor):
        if self.stage_id == 0:
            input_tensor = self._load_micro_batch(self.micro_batch_id)

        output_tensor = self._layers.forward(input_tensor)

        if self.is_last_stage:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            # train calculate loss for train
            if self._compute_loss:
                assert self._layers._loss_fn is not None, "loss function should exist to compute loss"
                labels = self._load_micro_batch(self.micro_batch_id)
                output_tensor = self._layers._loss_fn(output_tensor, labels)
                assert isinstance(
                    output_tensor, paddle.Tensor
                ), "Currently, loss_fn should obtain Paddle.Tensor dtype"

                if self.accumulate_steps > 1:
                    output_tensor = output_tensor / self.accumulate_steps

                if self.total_loss is None:
                    self.total_loss = paddle.zeros_like(output_tensor)
                self.total_loss += output_tensor.detach()
232 233 234 235 236 237 238 239 240 241 242

        self.micro_batch_id += 1
        return output_tensor

    def _backward_step(self, input_tensor, output_tensor, output_tensor_grad):
        if self.is_last_stage:
            assert output_tensor_grad is None
            if self.scaler:
                paddle.autograd.backward(self.scaler.scale(output_tensor))
            else:
                paddle.autograd.backward(output_tensor)
243
        else:
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            if isinstance(output_tensor, tuple):
                outputs = [t for t in output_tensor if not t.stop_gradient]
                assert len(outputs) == len(output_tensor_grad)
                paddle.autograd.backward(
                    tensors=outputs,
                    grad_tensors=[t for t in output_tensor_grad])
            else:
                paddle.autograd.backward(
                    tensors=[output_tensor], grad_tensors=[output_tensor_grad])

        input_tensor_grad = None
        if input_tensor is not None:
            if isinstance(input_tensor, tuple):
                input_tensor_grad = tuple(
                    [t.grad for t in input_tensor if not t.stop_gradient])
            else:
                input_tensor_grad = input_tensor.grad
        return input_tensor_grad
262 263

    def _load_micro_batch(self, cache_id):
264 265 266 267 268 269 270
        inputs = self.data
        begin = cache_id * self.micro_batch_size
        end = begin + self.micro_batch_size

        if self.is_first_stage:
            assert len(inputs) == 2, "length of input should be 2"
            if isinstance(inputs[0], tuple):
271 272 273
                assert len(
                    inputs[0]
                ) > 1, "If you use tuple for input data, it should have at least two inputs."
274 275 276 277 278 279
                batch_size = inputs[0][0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size, (
                    "batch_size needs to be divisible by micro_batch_size. Currently, "
                    "batch_size = %d, micro_batch_size = %d, accumulate_steps = %d."
                    %
                    (batch_size, self.micro_batch_size, self.accumulate_steps))
280 281
                data = [input[begin:end, :].detach() for input in inputs[0]]
                return tuple(data)
282 283 284
            else:
                batch_size = inputs[0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
285
                return inputs[0][begin:end, :].detach()
286 287 288 289 290
        elif self.is_last_stage:
            assert len(inputs) == 2, "length of input should be 2"
            if isinstance(inputs[1], tuple):
                batch_size = inputs[1][0].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
291 292
                data = [input[begin:end, :].detach() for input in inputs[1]]
                return tuple(data)
293
            else:
294 295
                batch_size = inputs[1].shape[0]
                assert self.micro_batch_size * self.accumulate_steps == batch_size
296
                return inputs[1][begin:end, :].detach()
297 298 299
        else:
            # No data input is required for other stages
            inputs = None
300

301
    def _broadcast_final_loss(self):
302 303 304 305 306 307 308 309
        if self.is_last_stage:
            assert self.total_loss is not None, "train_batch() in last stage should obtain vaild loss"
            loss = self.total_loss.detach()
            paddle.distributed.broadcast(
                loss,
                src=self.global_rank,
                use_calc_stream=True,
                group=self.pp_group)
310
        else:
311 312 313 314 315 316 317
            loss = paddle.zeros(shape=[1], dtype="float32")
            paddle.distributed.broadcast(
                loss,
                src=self._hcg.get_rank_from_stage(self.num_stages - 1),
                use_calc_stream=True,
                group=self.pp_group)
        return loss
318

319
    def _optimizer_step(self):
320 321 322 323
        if self.scaler:
            self.scaler.minimize(self.optimizer, self.train_loss)
        else:
            self.optimizer.step()
324

325 326 327
        self.optimizer.clear_grad()
        if self.lr_scheduler:
            self.lr_scheduler.step()