fusion_gru_op.cc 17.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_gru_op.h"
T
tensor-tang 已提交
16
#include <cstring>  // for memcpy
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
T
tensor-tang 已提交
30
                 "Assert only one Input(WeightX) of GRU.");
31
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
T
tensor-tang 已提交
32
                 "Assert only one Input(WeightH) of GRU.");
33 34
  PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
T
tensor-tang 已提交
35
                 "Assert only one Output(Hidden) of GRU.");
T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 3;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
                    "should be %d.",
                    frame_size);
  PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
                    "The second dimension of Input(WeightH) "
                    "should be 3 * %d.",
                    frame_size);

61
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
62 63 64 65
    auto h0_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
                      "The width of H0 must be equal to frame_size.");
  }
66
  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
67 68 69 70 71
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
    PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
T
tensor-tang 已提交
72 73
                      "The shape of Bias must be [1, frame_size * 3].");
  }
T
tensor-tang 已提交
74 75 76
  framework::DDim out_dims({x_dims[0], frame_size});
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->ShareLoD("X", "Hidden");
T
tensor-tang 已提交
77
  int xx_width;
T
tensor-tang 已提交
78
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
79 80 81
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
82
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
T
tensor-tang 已提交
83
                   "Assert only one Output(ReorderedH0) of GRU.");
84
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
T
tensor-tang 已提交
85
                   "Assert only one Output(BatchedInput) of GRU.");
86
    PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
T
tensor-tang 已提交
87
                   "Assert only one Output(BatchedOut) of GRU.");
T
tensor-tang 已提交
88 89
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedOut", out_dims);
T
tensor-tang 已提交
90
  }
T
tensor-tang 已提交
91 92
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102
}

framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionGRUOpMaker::Make() {
T
tensor-tang 已提交
103 104
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
105
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
106 107
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
108 109 110 111 112
  AddInput("H0",
           "(Tensor, optional) The initial hidden state is an optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size, D is the hidden size.")
      .AsDispensable();
T
tensor-tang 已提交
113 114 115 116
  AddInput("WeightX",
           "(Tensor) The FC weight with shape (M x 3D),"
           "where M is the dim size of x, D is the hidden size. ");
  AddInput("WeightH",
T
tensor-tang 已提交
117 118 119 120 121
           "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
           "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
           "Acutally they are D x 2D and D x D two part weights."
           "{W_update, W_reset; W_state}"
           "{D x (D + D); D x D}");
T
tensor-tang 已提交
122
  AddInput("Bias",
T
tensor-tang 已提交
123 124 125
           "(Tensor, optional) (1 x 3D)."
           "Almost same as GRUOp."
           "Note: if have FC bias it should be added on this bias.")
T
tensor-tang 已提交
126
      .AsDispensable();
T
tensor-tang 已提交
127 128
  AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.")
      .AsIntermediate();
T
tensor-tang 已提交
129
  AddOutput("XX",
T
tensor-tang 已提交
130
            "(LoDTensor) the result after X * WeightX (size is T x 3D)"
T
tensor-tang 已提交
131 132 133
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size, M is the dim size of x input.")
T
tensor-tang 已提交
134
      .AsIntermediate();
T
tensor-tang 已提交
135 136 137 138
  AddOutput("BatchedInput",
            "(LoDTensor) This is the batched result of input X"
            "or the batched result after fc, shape (T x 3D)")
      .AsIntermediate();
T
tensor-tang 已提交
139
  AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.")
T
tensor-tang 已提交
140
      .AsIntermediate();
T
tensor-tang 已提交
141
  AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
  AddAttr<std::string>("activation",
                       "(string, default tanh) "
                       "The activation type used for output candidate {h}_t.")
      .SetDefault("tanh");
  AddAttr<std::string>(
      "gate_activation",
      "(string, default sigmoid) "
      "The activation type used in update gate and reset gate.")
      .SetDefault("sigmoid");
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed GRU.")
      .SetDefault(false);
T
tensor-tang 已提交
155 156 157 158
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute GRU.")
      .SetDefault(true);
T
tensor-tang 已提交
159 160 161 162 163 164 165
  AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU, 
more details can refer to GRU op.
)DOC");
}

T
tensor-tang 已提交
166
template <typename T>
T
tensor-tang 已提交
167 168
class FusionGRUKernel : public framework::OpKernel<T> {
 public:
T
tensor-tang 已提交
169
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
170
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }

#define INIT_VEC_FUNC                                                     \
  std::function<void(const int, const T *, T *)> act_gate, act_state;     \
  std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");          \
  auto& act_state_str = ctx.Attr<std::string>("activation");              \
  if (platform::jit::MayIUse(platform::jit::avx)) {                       \
    math::VecActivations<T, platform::jit::avx> act_functor;              \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::avx>;                       \
  } else {                                                                \
    math::VecActivations<T, platform::jit::isa_any> act_functor;          \
    act_gate = act_functor(act_gate_str);                                 \
    act_state = act_functor(act_state_str);                               \
    cross = math::vec_cross<T, platform::jit::isa_any>;                   \
  }

T
tensor-tang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 3D*/ \
  const int total_T = x_dims[0];         \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D3 = wh_dims[1];             \
  const int D2 = D * 2;

T
tensor-tang 已提交
212 213 214
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
215 216
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
T
tensor-tang 已提交
217 218 219 220 221
    INIT_VEC_FUNC

    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
222
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
T
tensor-tang 已提交
223 224 225 226 227 228 229 230
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
    const T* wh_state_data = wh_data + D * D2;
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
T
tensor-tang 已提交
231 232
                                      xx_data,
                                      bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    int xx_offset = D3;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 3;
      hidden_out_data = hidden_out_data + offset;
      xx_offset = -D3;
      gate_offset = -D;
    }
    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
    };
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
250
      const T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + bid * D;
      } else {
        // W: {W_update, W_reset; W_state}
        // update gate
        act_gate(D, xx_data, xx_data);
        // state gate
        act_state(D, xx_data + D2, xx_data + D2);
        // out = a*b
        blas.VMUL(D, xx_data, xx_data + D2, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        tstart = 1;
        move_step();
      }
      for (int step = tstart; step < seq_len; ++step) {
        // gemm prev * (Wu + Wr)
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
                  D3);
        act_gate(D2, xx_data, xx_data);
        // rt = rt*ht_1 inplace result
        blas.VMUL(D, prev_hidden_data, xx_data + D, hidden_out_data);

        // gemm rt * Ws
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
                  hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
                  xx_data + D2, D3);
        act_state(D, xx_data + D2, xx_data + D2);
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, xx_data, xx_data + D2, prev_hidden_data, hidden_out_data);
        // save prev
        prev_hidden_data = hidden_out_data;
        move_step();
      }
    }
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
291
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
292
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
293 294 295 296 297 298 299
    if (x->lod()[0].size() == 2) {
      SeqCompute(ctx);
      return;
    }
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
300

T
tensor-tang 已提交
301 302 303
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_out = ctx.Output<LoDTensor>("BatchedOut");
T
tensor-tang 已提交
304

T
tensor-tang 已提交
305 306 307
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
308 309 310 311 312
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_input_data = batched_input->mutable_data<T>(ctx.GetPlace());
    T* batched_out_data = batched_out->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
313 314 315
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
316 317 318 319
    if (M > D3) {
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, x_data, wx_data,
                                        xx_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
320
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
321 322
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
323
      batched_input->set_lod(xx->lod());
T
tensor-tang 已提交
324 325 326
      math::FCCompute<DeviceContext, T>(blas, total_T, D3, M, xx_data, wx_data,
                                        batched_input_data,
                                        bias ? bias->data<T>() : nullptr);
T
tensor-tang 已提交
327 328
    }

T
tensor-tang 已提交
329 330 331 332
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
T
tensor-tang 已提交
333

T
tensor-tang 已提交
334
    int tstart = 0;
T
tensor-tang 已提交
335
    T* prev_hidden_data = nullptr;
T
tensor-tang 已提交
336
    if (h0) {
T
tensor-tang 已提交
337 338 339 340 341 342 343 344 345
      // reorder h0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(ctx.GetPlace());
      const T* h0_data = h0->data<T>();
      prev_hidden_data = reordered_h0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
      }
T
tensor-tang 已提交
346
    } else {
T
tensor-tang 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
      // compute without h0
      T* cur_in_data = batched_input_data;
      T* cur_out_data = batched_out_data;
      // W: {W_update, W_reset; W_state}
      for (int i = 0; i < max_bs; ++i) {
        // update gate
        act_gate(D, cur_in_data, cur_in_data);
        // state gate
        act_state(D, cur_in_data + D2, cur_in_data + D2);
        // out = a*b
        blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data);
        // add offset
        cur_in_data += D3;
        cur_out_data += D;
      }
      tstart = 1;
      prev_hidden_data = batched_out_data;
T
tensor-tang 已提交
364
    }
T
tensor-tang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378
    // Then start from next
    const T* wh_state_data = wh_data + D * D2;
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    batched_input_data = batched_input_data + tstart * max_bs * D3;
    batched_out_data = batched_out_data + tstart * max_bs * D;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      // gemm prev * (Wu + Wr)
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast<T>(1),
                prev_hidden_data, D, wh_data, D2, static_cast<T>(1),
                batched_input_data, D3);

      T* cur_batched_data = batched_input_data;
379
      T* cur_out_data = batched_out_data;
T
tensor-tang 已提交
380 381 382 383
      T* cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        act_gate(D2, cur_batched_data, cur_batched_data);
        // rt = rt*ht_1 inplace result
384
        blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D, cur_out_data);
T
tensor-tang 已提交
385 386 387

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
388
        cur_out_data += D;
T
tensor-tang 已提交
389 390
      }

T
tensor-tang 已提交
391
      cur_batched_data = batched_input_data;
392
      cur_out_data = batched_out_data;
T
tensor-tang 已提交
393
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast<T>(1),
394
                cur_out_data, D, wh_state_data, D, static_cast<T>(1),
T
tensor-tang 已提交
395 396 397 398 399 400
                cur_batched_data + D2, D3);

      cur_prev_hidden_data = prev_hidden_data;
      for (int i = 0; i < cur_bs; ++i) {
        // ht~ = act_state(...)
        act_state(D, cur_batched_data + D2, cur_batched_data + D2);
T
tensor-tang 已提交
401 402 403
        // out = zt*ht~ + (1-zt)*ht_1
        cross(D, cur_batched_data, cur_batched_data + D2, cur_prev_hidden_data,
              cur_out_data);
T
tensor-tang 已提交
404 405 406 407

        cur_batched_data += D3;
        cur_prev_hidden_data += D;
        cur_out_data += D;
T
tensor-tang 已提交
408
      }
T
tensor-tang 已提交
409 410 411
      prev_hidden_data = batched_out_data;
      batched_out_data = cur_out_data;
      batched_input_data = cur_batched_data;
T
tensor-tang 已提交
412
    }
T
tensor-tang 已提交
413

T
tensor-tang 已提交
414
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
415 416
    batched_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_out, hidden_out);
T
tensor-tang 已提交
417
  }
T
tensor-tang 已提交
418
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
419 420
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
421 422 423 424 425 426 427 428
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
429 430
REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel<float>,
                       ops::FusionGRUKernel<double>);