matmul_v2_op.cc 9.4 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>

namespace paddle {
namespace operators {

class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

    std::vector<int64_t> dims_x =
        paddle::framework::vectorize(ctx->GetInputDim("X"));
    std::vector<int64_t> dims_y =
        paddle::framework::vectorize(ctx->GetInputDim("Y"));
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();
38 39 40 41 42 43 44 45
    PADDLE_ENFORCE_GT(ndims_x, 0,
                      platform::errors::InvalidArgument(
                          "The Input(X) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
    PADDLE_ENFORCE_GT(ndims_y, 0,
                      platform::errors::InvalidArgument(
                          "The Input(Y) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
S
ShenLiang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
73
    if (ndims_x > ndims_y) {
S
ShenLiang 已提交
74
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
75
    } else if (ndims_x < ndims_y) {
S
ShenLiang 已提交
76
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
77 78 79 80 81
    } else {
      new_dims.reserve(ndims_x);
      for (size_t i = 0; i < ndims_x - 2; ++i) {
        new_dims.push_back(std::max(dims_x[i], dims_y[i]));
      }
S
ShenLiang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

    auto out_dims = framework::make_ddim(new_dims);
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /* --> */ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
101
    auto input_data_type =
102
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
103 104 105 106 107 108 109 110 111

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
112 113 114 115 116 117 118 119 120 121 122 123 124
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
S
ShenLiang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
142 143
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
144 145
        .SetDefault(false)
        .AsExtra();
146 147 148 149
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
150 151
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
S
ShenLiang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul_v2");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
C
chentianyu03 已提交
184 185 186

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
187 188 189 190 191 192 193 194 195 196 197
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
S
ShenLiang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad);

REGISTER_OP_CPU_KERNEL(
    matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
243 244
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
245
                        paddle::platform::complex<float>>,
246
    ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
247
                        paddle::platform::complex<double>>);
S
ShenLiang 已提交
248 249 250 251

REGISTER_OP_CPU_KERNEL(
    matmul_v2_grad,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
252 253
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
254
                            paddle::platform::complex<float>>,
255
    ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
256
                            paddle::platform::complex<double>>);