index_sample_op.cc 6.3 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/index_sample_op.h"
#include <vector>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {
class IndexSampleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input(Tensor), dtype support int32/int64/float/double");
    AddInput("Index", "Index(Tensor), dtype support int32/int64");
    AddOutput("Out", "Return the element of input at index");

    AddComment(R"DOC(
    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    X tensor and Index tensor's shape must be 2-D, 
    dimension at 0 which usually is batch size must be equal.

    The returned tensor has the same shape and dimensions as the Index tensor.
    )DOC");
  }
};

class IndexSampleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Inputs(Input) of FindByIndex should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
                      platform::errors::InvalidArgument(
                          "Inputs(Index) of FindByIndex should not be null."));

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Inputs(X) shape of IndexSample op should be 2-D, but "
            "got X's shape = [%s], please check X shape.",
            input_dims));

    auto index_dims = ctx->GetInputDim("Index");
    PADDLE_ENFORCE_EQ(
        input_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Inputs(Index) shape of IndexSample op should be 2-D, but "
            "got Index's shape [%s] , please check index shape.",
            input_dims));
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(input_dims[0], index_dims[0],
                        platform::errors::InvalidArgument(
                            "Inputs(X)'s value of dimension 0 must same with "
                            "Inputs(Index)'s value of dimension 0, but "
                            "got %d of Inputs(X), and got %d of Inputs(Index), "
                            "please check Inputs shape.",
                            input_dims[0], index_dims[0]));
    }
    ctx->SetOutputDim("Out", index_dims);
    auto type = ctx->GetInputsVarType("Index")[0];
    if (type == framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Index", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class IndexSampleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Index"), true,
        platform::errors::InvalidArgument("Input(Index) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class IndexSampleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("index_sample_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Index", this->Input("Index"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(IndexSampleGradNoNeedBufferVarInferer, "X");
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(index_sample, ops::IndexSampleOp, ops::IndexSampleOpMaker,
                  ops::IndexSampleGradMaker<paddle::framework::OpDesc>,
                  ops::IndexSampleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(index_sample_grad, ops::IndexSampleGradOp,
                  ops::IndexSampleGradNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL(
C
Chengmo 已提交
145 146 147 148 149
    index_sample,
    ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, float>,
    ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, double>,
    ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, int>,
    ops::IndexSampleKernel<paddle::platform::CPUDeviceContext, int64_t>);
C
Chengmo 已提交
150 151
REGISTER_OP_CPU_KERNEL(
    index_sample_grad,
C
Chengmo 已提交
152 153 154 155
    ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::IndexSampleGradKernel<paddle::platform::CPUDeviceContext, int64_t>);