test_activation_op.py 12.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import unittest
import numpy as np
from op_test import OpTest


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.exp(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}

    def test_check_output(self):
        self.check_output()

32 33 34 35
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.log(1 / (1 + np.exp(-self.inputs['X'])))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


K
Kavya Srinet 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32")
        }
        self.outputs = {'Y': self.inputs['X'] - np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        threshold = 0.5

        self.inputs = {'X': x}
        self.attrs = {'lambda': threshold}

        t = np.copy(x)
        t[(t >= -threshold) & (t <= threshold)] = 0
        self.outputs = {'Y': t}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.005)


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
        lambda_val = 0.1
        self.attrs = {'lambda': lambda_val}
        self.inputs = {
            'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32")
        }
        y = np.copy(self.inputs['X'])
        y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * (
            y - lambda_val)
        self.outputs = {'Y': y}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.sqrt(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
139 140 141 142 143 144
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
145 146 147 148 149 150 151 152 153 154
        self.inputs = {'X': x}
        self.outputs = {'Y': np.abs(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


D
dzhwinter 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
        self.outputs = {'Y': np.ceil(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
        # numpy floor need +1
        self.outputs = {'Y': np.floor(self.inputs['X']) + 1.0}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        self.inputs = {'X': x}
        self.outputs = {'Y': np.round(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


Q
qijun 已提交
198
class TestRelu(OpTest):
199
    def setUp(self):
Q
qijun 已提交
200 201 202 203 204 205
        self.op_type = "relu"
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Y': np.maximum(self.inputs['X'], 0)}
206 207 208 209 210 211 212 213 214 215 216 217

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
218 219
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
220 221
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
222
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
223 224

        self.inputs = {'X': x}
225 226 227 228 229 230 231 232 233 234 235 236 237
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
        self.outputs = {'Y': t}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


238
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
239
    def setUp(self):
240 241 242 243 244 245 246 247 248
        self.op_type = "relu6"
        x = np.random.uniform(-1, 1, [4, 10]).astype("float32")
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02

        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
K
Kavya Srinet 已提交
249
        self.outputs = {
250
            'Y': np.minimum(np.maximum(self.inputs['X'], 0), threshold)
K
Kavya Srinet 已提交
251 252 253 254 255 256
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
257
        self.check_grad(['X'], 'Y', max_relative_error=0.02)
K
Kavya Srinet 已提交
258 259


260 261 262
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
263
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
Y
Yang Yang(Tony) 已提交
264
        threshold = 2.0
Q
qijun 已提交
265 266 267
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
268 269 270 271 272 273 274 275 276 277 278 279 280 281
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
        self.outputs = {'Y': np.log((np.exp(t) + 1))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        alpha = 1.
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
        self.outputs = {
            'Y': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


Q
qijun 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.outputs = {'Y': np.reciprocal(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.01)


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.log(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.square(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


345 346 347 348
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
Y
Yang Yang(Tony) 已提交
349
        self.attrs = {'factor': 3.0}
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        self.outputs = {'Y': np.power(self.inputs['X'], 3)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
        self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)}

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
373 374 375 376
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


K
kexinzhao 已提交
377 378 379 380
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
        self.inputs = {
Y
Yu Yang 已提交
381
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float64")
K
kexinzhao 已提交
382 383 384 385 386 387 388 389 390 391
        }
        self.outputs = {'Y': np.log(1 + np.exp(self.inputs['X']))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {
            'Y': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X']))
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
        threshold = 0.25
        self.relative_error = 0.005
        X = np.random.uniform(-1, 1, [11, 17]).astype("float32")

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2

        self.inputs = {'X': X}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Y': (X > threshold) * X}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=self.relative_error)


430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        self.inputs = {'X': X}
        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
        self.outputs = {'Y': np.maximum(0.0, np.minimum(1.0, temp))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.002)


Q
qijun 已提交
458 459
if __name__ == "__main__":
    unittest.main()