interpolate_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12 13
#include "paddle/fluid/operators/interpolate_op.h"
#include <string>
14 15 16 17 18 19 20 21
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

22
class InterpolateOp : public framework::OperatorWithKernel {
23 24 25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
29
                   "Input(X) of InterpolateOp should not be null.");
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
31 32 33 34 35 36
                   "Output(Out) of InterpolationOp should not be null.");

    auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
    PADDLE_ENFORCE(
        "bilinear" == interp_method || "nearest" == interp_method,
        "Interpolation method can only be \"bilinear\" or \"nearest\".");
37 38 39 40 41 42

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");

43
    if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
44 45 46 47
      auto out_size_dim = ctx->GetInputDim("OutSize");
      PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                        "OutSize's dimension size must be 1");
      PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
48 49
      ctx->ShareLoD("X", "Out");
      return;
50 51 52 53 54 55 56 57
    }
    std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
58 59
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
60 61 62
  }
};

63
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
64 65 66
 public:
  void Make() override {
    AddInput("X",
67 68
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N,  C, H, w].");
69
    AddInput("OutSize",
70
             "This is a 1-D tensor with two numbers to specify output size. "
71 72
             "The first number is height and the second number is width.")
        .AsDispensable();
73 74 75
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a 4-D tensor with shape of [N, C, H, W].");
76

77 78
    AddAttr<int>("out_h", "output height of interpolate op.");
    AddAttr<int>("out_w", "output width of interpolate op.");
79 80 81 82 83 84
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
                         "bilinear interpolation and \"nearest\" for nearest "
                         "neighbor interpolation.")
        .SetDefault("bilinear");
85 86 87 88 89 90 91 92 93 94 95 96
    AddAttr<bool>(
        "align_corners",
        "an optinal bool. Defaults to True. "
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
        "if Flase, are not aligned")
        .SetDefault(true);
    AddAttr<int>("align_mode",
                 "(int, default \'0\'), align_corners mode , can be \'0\' "
                 "for pytorch calculation method, can be \'1\' for "
                 "tensorflow calculation method.")
        .SetDefault(0);
97
    AddComment(R"DOC(
98 99 100 101 102
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

103
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
104
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
105 106
          direction) on input tensor.
            
107 108 109 110 111 112
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
          Align_corners and align_mode are optinal parameters,The calculation method 
          of interpolation can be selected by them.
          
          Example:

          for scale:
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
          case 1:
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

          case 2:
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

          case 1:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          case 2:
              align_corners = False , align_mode = 1
              or
              align_corners = True
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          

174
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
175
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
176 177 178

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
179 180 181 182
         )DOC");
  }
};

183
class InterpolateOpGrad : public framework::OperatorWithKernel {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
200 201
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
202 203 204 205 206 207 208
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
209
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
210
                  paddle::framework::DefaultGradOpDescMaker<true>);
211 212 213 214 215 216 217 218 219 220
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad);
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
221 222
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
223
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
224
                       ops::InterpolateGradKernel<double>);