CosSimOp.cpp 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CosSimOp.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {
X
xutianbing 已提交
20 21 22 23 24 25 26 27 28
/**
 * Cosine Similarity for CpuMatrix
 *
 * \param out_mat, output value, size: nSamples * 1.
 * \param in1_mat, input value 1, size: nSamples * dim.
 * \param in2_mat, input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
 * \param scale, default 1.0
 *
 */
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
template <>
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix* out_mat,
                                    const CpuMatrix* in1_mat,
                                    const CpuMatrix* in2_mat,
                                    real scale) {
  CHECK(out_mat && in1_mat && in2_mat);
  size_t num_samples = out_mat->getHeight();
  size_t dim = in1_mat->getWidth();
  /// column vector [nSamples, 1]
  real* out = out_mat->getData();
  const real* x = in1_mat->getData();
  const real* y = in2_mat->getData();

  /// in2 might only have one row or full rows
  CHECK(in2_mat->getHeight() == 1LU || in2_mat->getHeight() == num_samples);
  size_t inc = (in2_mat->getHeight() == 1LU) ? 0 : dim;
  for (size_t i = 0; i < num_samples; ++i, x += dim, y += inc) {
    real square_sum_x = 0;
    real square_sum_y = 0;
    real xy = 0;
    for (size_t j = 0; j < dim; ++j) {
      square_sum_x += x[j] * x[j];
      square_sum_y += y[j] * y[j];
      xy += x[j] * y[j];
    }
    CHECK(square_sum_x > 0 && square_sum_y > 0);
    out[i] = scale * xy / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
  }
}

/**
X
xutianbing 已提交
60 61 62 63 64 65 66
 * Cosine Similarity
 * for each row i,
 *   out[i] = scale * cos(input1[i], input2[i])
 *      = scale * <input1[i], input2[i]>/sqrt(|input1[i]|^2 * |input2[i]|^2)
 * when input2 only has one row, then for each row i,
 *   out[i] = cos(input1[i], input2[0])
 *
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 * \param inputs[0] input matrix 1, size: nSamples * dim.
 * \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
 * \param outputs[0] output matrix, size : nSamples * 1.
 */

template <DeviceType Device>
class CosSimForwardFunc : public FunctionBase {
  void init(const FuncConfig& config) override {
    scale_ = config.get<real>("scale");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
    CHECK_EQ(inputs.size(), 2);
    CHECK_EQ(outputs.size(), 1);
    CHECK_EQ(inouts.size(), 0);

    CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
    CHECK_EQ(inputs[0].dims_[1], inputs[1].dims_[1]);
    CHECK_EQ(outputs[0].dims_[1], 1UL);

    CHECK(outputs[0].getData() && inputs[0].getData() && inputs[1].getData());
    auto out_mat = std::make_shared<typename MatrixT<Device>::type>(
        outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
    const auto in1_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
    const auto in2_mat = std::make_shared<typename MatrixT<Device>::type>(
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);

    CosSimForward<Device>(out_mat.get(), in1_mat.get(), in2_mat.get(), scale_);
  }

private:
  real scale_;
};

X
xutianbing 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * Cosine Similarity Derivative for CpuMatrix
 *
 * \param in1_grad  forward input grad 1, size: nSamples * dim.
 * \param in2_grad  forward input grad 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
 *
 * \param out_grad  backward loss output grad, size : nSamples * 1.
 * \param out_val   forward output value, size: nSamples * 1.
 * \param in1_val   forward input value 1, size: nSamples * dim.
 * \param in2_val   forward input value 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
 * \param scale,    default 1.0
 */
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
template <>
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix* out_grad,
                                     const CpuMatrix* out_val,
                                     const CpuMatrix* in1_val,
                                     const CpuMatrix* in2_val,
                                     CpuMatrix* in1_grad,
                                     CpuMatrix* in2_grad,
                                     real scale) {
  CHECK(out_grad && out_val && in1_val && in2_val && in1_grad && in2_grad);
  CHECK_EQ(out_val->useGpu_, false) << "Matrix type are GPU, CPU required";

  const real* grad = out_grad->getData();
  const real* out = out_val->getData();
  const real* prev_out_x = in1_val->getData();
  const real* prev_out_y = in2_val->getData();
  real* prev_grad_x = in1_grad->getData();
  real* prev_grad_y = in2_grad->getData();

  size_t num_samples = out_grad->getHeight();
  size_t dim = in1_val->getWidth();
  CHECK_EQ(in2_val->getHeight(), in2_grad->getHeight());
  CHECK(in2_val->getHeight() == 1LU || in2_val->getHeight() == num_samples);
  size_t inc = (in2_val->getHeight() == 1LU) ? 0 : dim;
  for (size_t i = 0; i < num_samples; ++i,
              prev_out_x += dim,
              prev_out_y += inc,
              prev_grad_x += dim,
              prev_grad_y += inc) {
    real square_sum_x = 0;
    real square_sum_y = 0;
    real xy = 0;
    for (size_t j = 0; j < dim; ++j) {
      square_sum_x += prev_out_x[j] * prev_out_x[j];
      square_sum_y += prev_out_y[j] * prev_out_y[j];
      xy += prev_out_x[j] * prev_out_y[j];
    }
    CHECK(square_sum_x > 0 && square_sum_y > 0);
    if (xy == 0) {
      real reciprocal =
          1.0f / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
      for (size_t j = 0; j < dim; ++j) {
        prev_grad_x[j] += scale * grad[i] * prev_out_y[j] * reciprocal;
        prev_grad_y[j] += scale * grad[i] * prev_out_x[j] * reciprocal;
      }
    } else {
      real reciprocal_xy = 1.0f / xy;
      real reciprocal_square_sum_x = 1.0f / square_sum_x;
      real reciprocal_square_sum_y = 1.0f / square_sum_y;
      for (size_t j = 0; j < dim; ++j) {
        prev_grad_x[j] +=
            out[i] * grad[i] * (prev_out_y[j] * reciprocal_xy -
                                prev_out_x[j] * reciprocal_square_sum_x);
        prev_grad_y[j] +=
            out[i] * grad[i] * (prev_out_x[j] * reciprocal_xy -
                                prev_out_y[j] * reciprocal_square_sum_y);
      }
    }
  }
}

/**
X
xutianbing 已提交
179 180
 * Cosine Similarity backward Derivative
 *
X
xutianbing 已提交
181 182 183 184 185 186 187 188 189
 * \param inouts[0] forward input grad 1, size: nSamples * dim.
 * \param inouts[1] forward input grad 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
 *
 * \param inputs[0] backward loss output grad, size : nSamples * 1.
 * \param inputs[1] forward output value, size: nSamples * 1.
 * \param inputs[2] forward input value 1, size: nSamples * dim.
 * \param inputs[3] forward input value 2,
 *                  size: n2 * dim (n2 == 1 or n2 == nSamples).
190 191 192 193 194 195 196 197 198 199
 */
template <DeviceType Device>
class CosSimBackwardFunc : public FunctionBase {
  void init(const FuncConfig& config) override {
    scale_ = config.get<real>("scale");
  }

  void calc(const Arguments& inputs,
            const Arguments& outputs,
            const Arguments& inouts) override {
X
xutianbing 已提交
200 201 202
    CHECK_EQ(inputs.size(), 4);
    CHECK_EQ(outputs.size(), 0);
    CHECK_EQ(inouts.size(), 2);
203 204
    /// dim of out_grad and out_val == 1, column vector
    CHECK_EQ(inputs[0].dims_[1], 1UL);
X
xutianbing 已提交
205
    CHECK_EQ(inputs[1].dims_[1], 1UL);
206
    /// nSamples of out_grad == out_val == in_val1 == in_grad1
X
xutianbing 已提交
207 208 209
    CHECK_EQ(inputs[1].dims_[0], inputs[0].dims_[0]);
    CHECK_EQ(inputs[0].dims_[0], inputs[0].dims_[0]);
    CHECK_EQ(inouts[0].dims_[0], inputs[0].dims_[0]);
210
    /// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
X
xutianbing 已提交
211 212 213
    CHECK_EQ(inputs[3].dims_[1], inputs[2].dims_[1]);
    CHECK_EQ(inouts[0].dims_[1], inputs[2].dims_[1]);
    CHECK_EQ(inouts[1].dims_[1], inputs[2].dims_[1]);
214

X
xutianbing 已提交
215 216
    CHECK(inputs[0].getData() && inputs[1].getData() && inputs[2].getData() &&
          inputs[3].getData() && inouts[0].getData() && inouts[1].getData());
217 218
    const auto out_grad = std::make_shared<typename MatrixT<Device>::type>(
        inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
X
xutianbing 已提交
219
    const auto out_val = std::make_shared<typename MatrixT<Device>::type>(
220
        inputs[1].getData(), inputs[1].dims_[0], inputs[1].dims_[1]);
X
xutianbing 已提交
221
    const auto in1_val = std::make_shared<typename MatrixT<Device>::type>(
222
        inputs[2].getData(), inputs[2].dims_[0], inputs[2].dims_[1]);
X
xutianbing 已提交
223
    const auto in2_val = std::make_shared<typename MatrixT<Device>::type>(
224
        inputs[3].getData(), inputs[3].dims_[0], inputs[3].dims_[1]);
X
xutianbing 已提交
225 226
    auto in1_grad = std::make_shared<typename MatrixT<Device>::type>(
        inouts[0].getData(), inouts[0].dims_[0], inouts[0].dims_[1]);
227
    auto in2_grad = std::make_shared<typename MatrixT<Device>::type>(
X
xutianbing 已提交
228
        inouts[1].getData(), inouts[1].dims_[0], inouts[1].dims_[1]);
229 230 231 232 233 234 235 236 237 238 239 240 241 242

    CosSimBackward<Device>(out_grad.get(),
                           out_val.get(),
                           in1_val.get(),
                           in2_val.get(),
                           in1_grad.get(),
                           in2_grad.get(),
                           scale_);
  }

private:
  real scale_;
};

243
REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc);
244
REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc);
245 246
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc);
247
REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc);
248 249
#endif
}  // namespace paddle