test_imperative_se_resnext.py 18.8 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
24
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
Y
Yan Xu 已提交
25 26
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
P
phlrain 已提交
27
from paddle.fluid.framework import _test_eager_guard
Y
Yan Xu 已提交
28

29 30 31
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})

Y
Yan Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
batch_size = 8
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": batch_size,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    },
    "batch_size": batch_size,
    "lr": 0.1,
    "total_images": 6149,
}


49
def optimizer_setting(params, parameter_list=None):
Y
Yan Xu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 6149
        else:
            total_images = params["total_images"]
        # TODO(Yancey1989): using lr decay if it is ready.
        #batch_size = ls["batch_size"]
        #step = int(total_images / batch_size + 1)

        #bd = [step * e for e in ls["epochs"]]
        #base_lr = params["lr"]
        #lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
63 64 65 66 67
        if fluid.in_dygraph_mode():
            optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                            parameter_list=parameter_list)
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
Y
Yan Xu 已提交
68 69 70 71 72 73

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
74
                 num_channels,
Y
Yan Xu 已提交
75 76 77 78 79
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
80
        super(ConvBNLayer, self).__init__()
Y
Yan Xu 已提交
81 82

        self._conv = Conv2D(
83
            num_channels=num_channels,
Y
Yan Xu 已提交
84 85 86 87 88 89 90 91
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

92
        self._batch_norm = BatchNorm(num_filters, act=act)
Y
Yan Xu 已提交
93 94 95 96 97 98 99 100 101

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
102
    def __init__(self, num_channels, reduction_ratio):
Y
Yan Xu 已提交
103

104 105
        super(SqueezeExcitation, self).__init__()
        self._num_channels = num_channels
106
        self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
107 108 109
        self._squeeze = Linear(
            num_channels,
            num_channels // reduction_ratio,
Y
Yan Xu 已提交
110 111 112
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='relu')
113 114 115
        self._excitation = Linear(
            num_channels // reduction_ratio,
            num_channels,
Y
Yan Xu 已提交
116 117
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
Y
Yan Xu 已提交
118
            act='sigmoid')
Y
Yan Xu 已提交
119 120 121

    def forward(self, input):
        y = self._pool(input)
122
        y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
Y
Yan Xu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
137
        super(BottleneckBlock, self).__init__()
Y
Yan Xu 已提交
138 139

        self.conv0 = ConvBNLayer(
140
            num_channels=num_channels, num_filters=num_filters, filter_size=1)
Y
Yan Xu 已提交
141
        self.conv1 = ConvBNLayer(
142
            num_channels=num_filters,
Y
Yan Xu 已提交
143 144 145 146 147
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality)
        self.conv2 = ConvBNLayer(
148
            num_channels=num_filters,
Y
Yan Xu 已提交
149 150 151 152 153
            num_filters=num_filters * 4,
            filter_size=1,
            act='relu')

        self.scale = SqueezeExcitation(
154
            num_channels=num_filters * 4, reduction_ratio=reduction_ratio)
Y
Yan Xu 已提交
155 156 157

        if not shortcut:
            self.short = ConvBNLayer(
158
                num_channels=num_channels,
Y
Yan Xu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        y = layer_helper.append_activation(y)
        return y


class SeResNeXt(fluid.dygraph.Layer):
186 187
    def __init__(self, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__()
Y
Yan Xu 已提交
188 189 190 191 192 193 194 195 196 197 198 199

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
200
                num_channels=3,
Y
Yan Xu 已提交
201 202 203 204 205
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
206
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
207 208 209 210 211 212
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
213
                num_channels=3,
214
                num_filters=64,
Y
Yan Xu 已提交
215 216 217 218
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
219
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
220 221 222 223 224 225
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
226
                num_channels=3,
227 228
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
229 230 231
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
232 233 234
                num_channels=64,
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
235 236 237
                stride=2,
                act='relu')
            self.conv2 = ConvBNLayer(
238 239 240 241
                num_channels=64,
                num_filters=128,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
242 243
                act='relu')
            self.pool = Pool2D(
244
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
245 246 247

        self.bottleneck_block_list = []
        num_channels = 64
248 249
        if layers == 152:
            num_channels = 128
Y
Yan Xu 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
267
            pool_size=7, pool_type='avg', global_pooling=True)
Y
Yan Xu 已提交
268 269 270
        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

271 272 273 274 275 276 277 278
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            act='softmax',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
Y
Yan Xu 已提交
279 280 281 282 283 284 285

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
286 287
            y = self.conv1(y)
            y = self.conv2(y)
Y
Yan Xu 已提交
288 289 290 291 292
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
293
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
Y
Yan Xu 已提交
294 295 296 297 298
        y = self.out(y)
        return y


class TestImperativeResneXt(unittest.TestCase):
299 300 301 302 303 304 305 306 307
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

Y
Yan Xu 已提交
308 309 310 311
    def test_se_resnext_float32(self):
        seed = 90

        batch_size = train_parameters["batch_size"]
312
        batch_num = 1
Y
Yan Xu 已提交
313
        epoch_num = 1
P
phlrain 已提交
314 315

        def run_dygraph():
C
cnn 已提交
316
            paddle.seed(seed)
L
Leo Chen 已提交
317
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
318

319 320 321
            se_resnext = SeResNeXt()
            optimizer = optimizer_setting(
                train_parameters, parameter_list=se_resnext.parameters())
Y
Yan Xu 已提交
322
            np.random.seed(seed)
323 324 325 326 327 328 329 330 331

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(
                        paddle.dataset.flowers.train(use_xmap=False)),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
Y
Yan Xu 已提交
332 333 334

            dy_param_init_value = {}
            for param in se_resnext.parameters():
L
lujun 已提交
335
                dy_param_init_value[param.name] = param.numpy()
Y
Yan Xu 已提交
336
            for epoch_id in range(epoch_num):
337
                for batch_id, data in enumerate(batch_py_reader()):
Y
Yan Xu 已提交
338 339 340 341

                    if batch_id >= batch_num and batch_num != -1:
                        break

342 343 344
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True
L
lujun 已提交
345
                    label.stop_gradient = True
Y
Yan Xu 已提交
346 347

                    out = se_resnext(img)
348 349 350
                    softmax_out = fluid.layers.softmax(out, use_cudnn=False)
                    loss = fluid.layers.cross_entropy(
                        input=softmax_out, label=label)
Y
Yan Xu 已提交
351 352
                    avg_loss = fluid.layers.mean(x=loss)

L
lujun 已提交
353
                    dy_out = avg_loss.numpy()
Y
Yan Xu 已提交
354 355 356 357

                    if batch_id == 0:
                        for param in se_resnext.parameters():
                            if param.name not in dy_param_init_value:
L
lujun 已提交
358 359
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
Y
Yan Xu 已提交
360

361 362 363 364 365 366 367
                    dy_grad_value = {}
                    for param in se_resnext.parameters():
                        if param.trainable:
                            np_array = np.array(param._grad_ivar().value()
                                                .get_tensor())
                            dy_grad_value[param.name + core.grad_var_suffix(
                            )] = np_array
Y
Yan Xu 已提交
368 369 370 371 372

                    optimizer.minimize(avg_loss)
                    se_resnext.clear_gradients()

                    dy_param_value = {}
Y
Yan Xu 已提交
373
                    for param in se_resnext.parameters():
L
lujun 已提交
374
                        dy_param_value[param.name] = param.numpy()
Y
Yan Xu 已提交
375

P
phlrain 已提交
376 377 378 379 380 381 382 383 384 385 386
                    return dy_out, dy_param_init_value, dy_param_value, dy_grad_value

        with fluid.dygraph.guard():
            dy_out, dy_param_init_value, dy_param_value, dy_grad_value = run_dygraph(
            )

        with fluid.dygraph.guard():
            with _test_eager_guard():
                eager_out, eager_param_init_value, eager_param_value, eager_grad_value = run_dygraph(
                )

Y
Yan Xu 已提交
387
        with new_program_scope():
C
cnn 已提交
388
            paddle.seed(seed)
L
Leo Chen 已提交
389
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
390 391 392 393

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

394
            se_resnext = SeResNeXt()
Y
Yan Xu 已提交
395 396 397 398 399
            optimizer = optimizer_setting(train_parameters)

            np.random.seed(seed)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
Y
Yan Xu 已提交
400 401
                batch_size=batch_size,
                drop_last=True)
Y
Yan Xu 已提交
402 403 404 405 406

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = se_resnext(img)
407 408
            softmax_out = fluid.layers.softmax(out, use_cudnn=False)
            loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
Y
Yan Xu 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            static_grad_name_list = []
            for param in se_resnext.parameters():
                static_param_name_list.append(param.name)
            for param in se_resnext.parameters():
                if param.trainable:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]
Y
Yan Xu 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            for epoch_id in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    if batch_id >= batch_num and batch_num != -1:
                        break

                    static_x_data = np.array(
                        [x[0].reshape(3, 224, 224)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    fetch_list.extend(static_grad_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_grad_value = {}
                    static_out = out[0]
                    param_start_pos = 1
                    grad_start_pos = len(
                        static_param_name_list) + param_start_pos
                    for i in range(
                            param_start_pos,
                            len(static_param_name_list) + param_start_pos):
                        static_param_value[static_param_name_list[
                            i - param_start_pos]] = out[i]
                    for i in range(grad_start_pos,
                                   len(static_grad_name_list) + grad_start_pos):
                        static_grad_value[static_grad_name_list[
                            i - grad_start_pos]] = out[i]
464

465 466 467
        self.assertTrue(
            np.allclose(static_out, dy_out),
            "\nstatic_out: {}\ndy_out: {}".format(static_out, dy_out))
Y
Yan Xu 已提交
468 469 470 471 472 473 474

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
475 476 477 478

        self.assertEqual(len(dy_grad_value), len(static_grad_value))

        for key, value in six.iteritems(static_grad_value):
479 480 481 482
            self.assertTrue(
                np.allclose(value, dy_grad_value[key]),
                "\nstatic_grad_value: {}\ndy_grad_value: {}".format(
                    value, dy_grad_value[key]))
483 484
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
485 486 487

        self.assertEqual(len(dy_param_value), len(static_param_value))
        for key, value in six.iteritems(static_param_value):
488 489 490 491
            self.assertTrue(
                np.allclose(value, dy_param_value[key]),
                "\nstatic_param_value: {}\ndy_param_value: {}".format(
                    value, dy_param_value[key]))
Y
Yan Xu 已提交
492 493 494
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))

P
phlrain 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        # check eager
        self.assertTrue(
            np.allclose(static_out, eager_out),
            "\nstatic_out: {}\neager_out: {}".format(static_out, eager_out))

        self.assertEqual(
            len(eager_param_init_value), len(static_param_init_value))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, eager_param_init_value[key]))

        self.assertEqual(len(eager_grad_value), len(static_grad_value))

        for key, value in six.iteritems(static_grad_value):
            self.assertTrue(
                np.allclose(value, eager_grad_value[key]),
                "\nstatic_grad_value: {}\neager_grad_value: {}".format(
                    value, eager_grad_value[key]))

        self.assertEqual(len(eager_param_value), len(static_param_value))
        for key, value in six.iteritems(static_param_value):
            self.assertTrue(
                np.allclose(value, eager_param_value[key]),
                "\nstatic_param_value: {}\neagear_param_value: {}".format(
                    value, eager_param_value[key]))

Y
Yan Xu 已提交
521 522

if __name__ == '__main__':
523
    paddle.enable_static()
Y
Yan Xu 已提交
524
    unittest.main()