yolov3_loss_op.h 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/phi/kernels/funcs/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35
static T SigmoidCrossEntropy(T x, T label) {
36 37 38
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

D
dengkaipeng 已提交
39
template <typename T>
40 41
static T L1Loss(T x, T y) {
  return std::abs(y - x);
D
dengkaipeng 已提交
42 43
}

44
template <typename T>
45
static T SigmoidCrossEntropyGrad(T x, T label) {
46 47 48
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

D
dengkaipeng 已提交
49
template <typename T>
50 51
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
D
dengkaipeng 已提交
52 53
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
65
  T x, y, w, h;
66 67 68 69 70 71 72 73
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
76 77
                                int input_size, int index, int stride,
                                float scale, float bias) {
78
  Box<T> b;
79 80
  b.x = (i + sigmoid<T>(x[index]) * scale + bias) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride]) * scale + bias) / grid_size;
81 82 83 84 85 86
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
87
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
88 89 90 91 92 93 94 95 96
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
97
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
98 99 100 101 102 103 104 105 106 107
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
108 109 110
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
111 112 113 114 115
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
116 117
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
118 119 120 121 122 123 124
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
125
                                int input_size, int stride, T score) {
126 127 128 129 130
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

131
  T scale = (2.0 - gt.w * gt.h) * score;
132 133
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx], tx) * scale;
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx + stride], ty) * scale;
134 135
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
136 137 138 139 140 141
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
142 143
                                    int grid_size, int input_size, int stride,
                                    T score) {
144 145 146 147 148
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

149
  T scale = (2.0 - gt.w * gt.h) * score;
150 151
  input_grad[box_idx] =
      SigmoidCrossEntropyGrad<T>(input[box_idx], tx) * scale * loss;
152
  input_grad[box_idx + stride] =
153
      SigmoidCrossEntropyGrad<T>(input[box_idx + stride], ty) * scale * loss;
154
  input_grad[box_idx + 2 * stride] =
155
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
156
  input_grad[box_idx + 3 * stride] =
157
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
158 159 160 161
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
162
                                 const int label, const int class_num,
163 164
                                 const int stride, const T pos, const T neg,
                                 T score) {
D
dengkaipeng 已提交
165 166
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
167
    loss[0] += SigmoidCrossEntropy<T>(pred, (i == label) ? pos : neg) * score;
168 169 170 171 172 173
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
174
                                     const int label, const int class_num,
175 176
                                     const int stride, const T pos, const T neg,
                                     T score) {
D
dengkaipeng 已提交
177 178 179
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
180 181
        SigmoidCrossEntropyGrad<T>(pred, (i == label) ? pos : neg) * score *
        loss;
182 183 184 185
  }
}

template <typename T>
D
dengkaipeng 已提交
186
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
187 188 189 190 191 192 193
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
194
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
195
          if (obj > 1e-5) {
196 197
            // positive sample: obj = mixup score
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 1.0) * obj;
D
dengkaipeng 已提交
198 199
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
200
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 0.0);
201 202 203 204 205 206 207 208 209 210 211
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
212
                                       const T* input, const T* objness,
213 214 215 216 217 218 219
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
220
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
221
          if (obj > 1e-5) {
222
            input_grad[k * w + l] =
223 224
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 1.0) * obj *
                loss[i];
D
dengkaipeng 已提交
225
          } else if (obj > -0.5) {
226 227
            input_grad[k * w + l] =
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 0.0) * loss[i];
228 229 230 231 232 233 234 235 236 237
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

254
template <typename T>
255 256 257 258
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
259 260
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
261
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
262
    auto* loss = ctx.Output<Tensor>("Loss");
263 264
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
265
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
266
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
267 268
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
269
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
270
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
271 272
    float scale = ctx.Attr<float>("scale_x_y");
    float bias = -0.5 * (scale - 1.);
273 274 275 276 277

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
278 279
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
280
    int input_size = downsample_ratio * h;
281

282 283 284
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

285 286 287
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
X
xiaoting 已提交
288 289 290
      T smooth_weight = std::min(1.0 / static_cast<T>(class_num), 1.0 / 40);
      label_pos = 1.0 - smooth_weight;
      label_neg = smooth_weight;
291 292
    }

293 294 295
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
296
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
297
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
298 299 300
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
301 302
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
303

304
    const T* gt_score_data;
305
    Tensor gtscore;
306
    if (!gt_score) {
D
dengkaipeng 已提交
307
      gtscore.mutable_data<T>({n, b}, ctx.GetPlace());
308
      phi::funcs::SetConstant<platform::CPUDeviceContext, T>()(
D
dengkaipeng 已提交
309
          ctx.template device_context<platform::CPUDeviceContext>(), &gtscore,
310
          static_cast<T>(1.0));
D
dengkaipeng 已提交
311 312
      gt_score = &gtscore;
      gt_score_data = gtscore.data<T>();
313 314 315 316
    } else {
      gt_score_data = gt_score->data<T>();
    }

317 318 319 320 321 322
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

323 324 325 326
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
327 328
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
329
            int box_idx =
D
dengkaipeng 已提交
330
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
331 332 333
            Box<T> pred =
                GetYoloBox(input_data, anchors, l, k, anchor_mask[j], h,
                           input_size, box_idx, stride, scale, bias);
334 335
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
336
              if (!gt_valid_mask_data[i * b + t]) {
337 338
                continue;
              }
339
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
340
              T iou = CalcBoxIoU(pred, gt);
341 342 343 344 345
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

346
            // If best IoU is bigger then ignore_thresh,
347
            // ignore the objectness loss.
348 349
            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
350
              obj_mask_data[obj_idx] = static_cast<T>(-1);
351
            }
352 353 354
            // all losses should be calculated if best IoU
            // is bigger then truth thresh, but currently,
            // truth thresh is an unreachable value as 1.0.
355 356 357 358
          }
        }
      }
      for (int t = 0; t < b; t++) {
359
        if (!gt_valid_mask_data[i * b + t]) {
360
          gt_match_mask_data[i * b + t] = -1;
361 362
          continue;
        }
363
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
364 365 366 367 368 369 370
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
371 372 373
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
374 375 376 377 378 379
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
380
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
381 382 383 384 385 386
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
387
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
388
        gt_match_mask_data[i * b + t] = mask_idx;
389
        if (mask_idx >= 0) {
390
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
391 392
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
393
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
394
                                 box_idx, gi, gj, h, input_size, stride, score);
395 396

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
397
          obj_mask_data[obj_idx] = score;
398 399

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
400 401
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
402
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
403
                           class_num, stride, label_pos, label_neg, score);
404 405 406 407
        }
      }
    }

408
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
409
                       mask_num, h, w, stride, an_stride);
410 411 412
  }
};

413
template <typename T>
414 415 416
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
417
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
418 419
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
420
    auto* gt_score = ctx.Input<Tensor>("GTScore");
421 422
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
423 424
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
425
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
426
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
427
    int class_num = ctx.Attr<int>("class_num");
428
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
429
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
430

431 432 433 434
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
435
    const int mask_num = anchor_mask.size();
436
    const int b = gt_match_mask->dims()[1];
437
    int input_size = downsample_ratio * h;
438

439 440 441
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

442 443 444
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
X
xiaoting 已提交
445 446 447
      T smooth_weight = std::min(1.0 / static_cast<T>(class_num), 1.0 / 40);
      label_pos = 1.0 - smooth_weight;
      label_neg = smooth_weight;
448 449
    }

450 451 452 453
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
454
    const T* obj_mask_data = objness_mask->data<T>();
455
    const int* gt_match_mask_data = gt_match_mask->data<int>();
456 457
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
458 459
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

460
    const T* gt_score_data;
461
    Tensor gtscore;
462
    if (!gt_score) {
D
dengkaipeng 已提交
463
      gtscore.mutable_data<T>({n, b}, ctx.GetPlace());
464
      phi::funcs::SetConstant<platform::CPUDeviceContext, T>()(
D
dengkaipeng 已提交
465
          ctx.template device_context<platform::CPUDeviceContext>(), &gtscore,
466
          static_cast<T>(1.0));
D
dengkaipeng 已提交
467 468
      gt_score = &gtscore;
      gt_score_data = gtscore.data<T>();
469 470 471 472
    } else {
      gt_score_data = gt_score->data<T>();
    }

473 474
    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
475
        int mask_idx = gt_match_mask_data[i * b + t];
476
        if (mask_idx >= 0) {
477
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
478 479 480 481
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
482 483
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
484 485 486 487
          CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
                                     input_data, gt, anchors,
                                     anchor_mask[mask_idx], box_idx, gi, gj, h,
                                     input_size, stride, score);
488 489

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
490 491
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
492
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
493 494
                               label_idx, label, class_num, stride, label_pos,
                               label_neg, score);
495 496 497 498 499
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
500
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
501
                           h, w, stride, an_stride);
502 503 504 505 506
  }
};

}  // namespace operators
}  // namespace paddle