eager_deletion_pass.cc 9.4 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
sneaxiy 已提交
15 16
#include <algorithm>
#include <functional>
S
sneaxiy 已提交
17 18
#include <queue>
#include <string>
S
sneaxiy 已提交
19
#include <tuple>
S
sneaxiy 已提交
20 21 22 23 24 25 26
#include <vector>

#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"

S
sneaxiy 已提交
27
DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
S
sneaxiy 已提交
28 29 30 31
              "Fraction of eager deletion. If less than 1.0, all variables in "
              "the program would be sorted according to its memory size, and "
              "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
              "variables would be deleted.");
S
sneaxiy 已提交
32

S
sneaxiy 已提交
33 34 35 36
namespace paddle {
namespace framework {
namespace details {

S
sneaxiy 已提交
37
// op -> variables which can be deleted after op runs
S
sneaxiy 已提交
38 39 40
using OpToVarNameSetMap =
    std::unordered_map<ComputationOpHandle *, std::unordered_set<std::string>>;

S
sneaxiy 已提交
41
// Check whether the variable is LoDTensor based on static VarDesc info
S
sneaxiy 已提交
42 43 44 45
static bool IsLoDTensor(VarDesc *var) {
  return var->Proto()->type().type() == proto::VarType::LOD_TENSOR;
}

S
sneaxiy 已提交
46 47 48 49 50 51
// Get memory size of LoDTensor
static int64_t GetMemorySize(
    const std::unordered_map<std::string, std::vector<VarHandle *>> &vars,
    const std::string &var_name) {
  auto *var_desc = TryGetLatestVarDesc(vars.at(var_name));
  PADDLE_ENFORCE_NOT_NULL(var_desc);
S
sneaxiy 已提交
52 53
  PADDLE_ENFORCE(IsLoDTensor(var_desc));
  auto dims = var_desc->GetShape();
S
sneaxiy 已提交
54 55
  return SizeOfType(var_desc->GetDataType()) *
         std::accumulate(dims.begin(), dims.end(), static_cast<int64_t>(1),
S
sneaxiy 已提交
56 57 58
                         std::multiplies<int64_t>());
}

S
sneaxiy 已提交
59 60 61 62
// Split all variables in the graph into LoDTensor and Non-LoDTensor (e.g.
// SelectedRows, LoDTensorArray)
// Since partial GC is based on static analysis of memory size of each variable
// So we should skip SelectedRows and LoDTensorArray here
S
sneaxiy 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static void SplitIntoLoDTensorAndNonLoDTensorVars(
    const OpToVarNameSetMap &m, const GraphVars &vars,
    OpToVarNameSetMap *lod_tensors, OpToVarNameSetMap *other_vars) {
  lod_tensors->clear();
  other_vars->clear();

  for (auto &op_vars_pair : m) {
    for (auto &var_name : op_vars_pair.second) {
      auto *var_desc = TryGetLatestVarDesc(
          vars[op_vars_pair.first->GetScopeIdx()].at(var_name));
      if (IsLoDTensor(var_desc)) {
        (*lod_tensors)[op_vars_pair.first].insert(var_name);
      } else {
        (*other_vars)[op_vars_pair.first].insert(var_name);
      }
    }
  }
}

S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct GCVarInfo {
  GCVarInfo(const std::string &name, int64_t memory_size,
            ComputationOpHandle *op, size_t scope_idx)
      : name_(name),
        memory_size_(memory_size),
        op_(op),
        scope_idx_(scope_idx) {}

  std::string name_;         // variable name
  int64_t memory_size_;      // memory size
  ComputationOpHandle *op_;  // op after which the variable could be deleted
  size_t scope_idx_;         // scope index where the variable locates

  int64_t AbsMemorySize() const { return std::abs(memory_size_); }
};

// Delete delete_lod_tensor_only is not used currently
static OpToVarNameSetMap ShrinkGCVars(
    const OpToVarNameSetMap &m, const GraphVars &vars,
    const std::vector<platform::Place> &places, double fraction_of_memory_size,
    bool delete_lod_tensor_only = false) {
  // Do not perform gc when fraction_of_memory_size = 0
S
sneaxiy 已提交
104 105
  if (fraction_of_memory_size <= 0.0) return {};

S
sneaxiy 已提交
106 107 108 109 110 111 112 113
  /**
   * Step 1: Split all variables into LoDTensor and Non-LoDTensor.
   * We can only calculate memory size of LoDTensors
   */
  OpToVarNameSetMap lod_tensors, other_vars;
  SplitIntoLoDTensorAndNonLoDTensorVars(m, vars, &lod_tensors, &other_vars);

  // Perform complete gc when fraction_of_memory_size >= 1
S
sneaxiy 已提交
114
  if (fraction_of_memory_size >= 1.0) {
S
sneaxiy 已提交
115
    return delete_lod_tensor_only ? lod_tensors : m;
S
sneaxiy 已提交
116 117
  }

S
sneaxiy 已提交
118 119 120
  /**
   * Step 2: build GCVarInfos, and calculate total memory sizes of each device
   */
S
sneaxiy 已提交
121

S
sneaxiy 已提交
122 123
  // place -> variable info (name, memory size, place, scope_idx)
  std::map<platform::Place, std::vector<GCVarInfo>> place_to_vars;
S
sneaxiy 已提交
124

S
sneaxiy 已提交
125 126
  // place -> total memory sizes
  std::map<platform::Place, int64_t> place_to_size;
S
sneaxiy 已提交
127
  for (auto &op_vars_pair : lod_tensors) {
S
sneaxiy 已提交
128 129 130 131 132 133 134 135 136 137
    auto *op = op_vars_pair.first;
    auto &var_names = op_vars_pair.second;
    auto scope_idx = op->GetScopeIdx();
    auto &place = places[scope_idx];

    for (auto &var_name : var_names) {
      auto var_size = GetMemorySize(vars[scope_idx], var_name);
      GCVarInfo var_info(var_name, var_size, op, scope_idx);
      place_to_size[place] += var_info.AbsMemorySize();
      place_to_vars[place].emplace_back(std::move(var_info));
S
sneaxiy 已提交
138 139 140
    }
  }

S
sneaxiy 已提交
141 142 143 144 145 146 147 148 149 150
  /**
   * Step 3: sort GCVarInfos, and only delete the largest variables.
   */
  OpToVarNameSetMap partial_vars;
  for (auto &place_to_var_pair : place_to_vars) {
    auto &place = place_to_var_pair.first;
    auto &gc_vars = place_to_var_pair.second;
    std::sort(gc_vars.begin(), gc_vars.end(),
              [](const GCVarInfo &var1, const GCVarInfo &var2) {
                return var1.AbsMemorySize() > var2.AbsMemorySize();
S
sneaxiy 已提交
151 152
              });

S
sneaxiy 已提交
153 154 155 156
    int64_t accumulated_size = 0;
    int64_t size_threshold =
        static_cast<int64_t>(fraction_of_memory_size * place_to_size[place]);
    for (size_t i = 0; i < gc_vars.size() && accumulated_size < size_threshold;
S
sneaxiy 已提交
157
         ++i) {
S
sneaxiy 已提交
158 159
      partial_vars[gc_vars[i].op_].insert(gc_vars[i].name_);
      accumulated_size += gc_vars[i].AbsMemorySize();
S
sneaxiy 已提交
160 161 162
    }
  }

S
sneaxiy 已提交
163 164 165
  /**
   * Step 4: Combine other vars (SelectedRows, LoDTensorArray)
   */
S
sneaxiy 已提交
166 167
  if (!delete_lod_tensor_only) {
    for (auto &op_vars_pair : other_vars) {
S
sneaxiy 已提交
168 169
      partial_vars[op_vars_pair.first].insert(op_vars_pair.second.begin(),
                                              op_vars_pair.second.end());
S
sneaxiy 已提交
170 171 172
    }
  }

S
sneaxiy 已提交
173
  return partial_vars;
S
sneaxiy 已提交
174 175
}

S
sneaxiy 已提交
176 177 178 179 180 181
class EagerDeletionPass : public ir::Pass {
 protected:
  std::unique_ptr<ir::Graph> ApplyImpl(
      std::unique_ptr<ir::Graph> graph) const override;
};

S
sneaxiy 已提交
182 183 184
std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  auto &ref_cnts =
S
sneaxiy 已提交
185
      Get<std::vector<AtomicReferenceCountMap>>(kRuntimeReferenceCount);
S
sneaxiy 已提交
186 187 188 189 190 191
  PADDLE_ENFORCE(ref_cnts.empty(),
                 "kRuntimeReferenceCount should be initialized here!");

  const auto &vars = graph->Get<GraphVars>(kGraphVars);
  ref_cnts.resize(vars.size());

S
fix bug  
sneaxiy 已提交
192 193
  const auto &last_live_ops =
      Get<std::vector<LastLiveOpsOfVars>>(kLastLiveOpsOfVars);
S
sneaxiy 已提交
194
  const auto &gcs = Get<GarbageCollectorMap>(kGarbageCollector);
S
sneaxiy 已提交
195
  const auto &places = Get<std::vector<platform::Place>>(kAllPlaces);
S
sneaxiy 已提交
196

S
sneaxiy 已提交
197 198
  // a reverse map of last_live_ops
  //   i.e., last op --> variable names which can be deleted.
S
sneaxiy 已提交
199
  OpToVarNameSetMap op_vars_map;
S
sneaxiy 已提交
200 201 202
  for (auto &var_ops_map : last_live_ops) {
    for (auto &var_ops_pair : var_ops_map) {
      const std::string &var_name = var_ops_pair.first;
S
fix bug  
sneaxiy 已提交
203 204
      for (auto *op : var_ops_pair.second) {
        op_vars_map[op].insert(var_name);
S
sneaxiy 已提交
205 206 207
      }
    }
  }
S
fix bug  
sneaxiy 已提交
208

S
sneaxiy 已提交
209 210
  op_vars_map = ShrinkGCVars(op_vars_map, vars, places,
                             FLAGS_memory_fraction_of_eager_deletion);
S
sneaxiy 已提交
211

S
fix bug  
sneaxiy 已提交
212 213 214 215 216 217 218
  for (auto &pair : op_vars_map) {
    auto *op = pair.first;
    auto &var_names = pair.second;

    auto *eager_deletion_node =
        graph->CreateEmptyNode("eager_deletion", ir::Node::Type::kOperation);
    auto *eager_deletion_op = new EagerDeletionOpHandle(
S
sneaxiy 已提交
219 220
        eager_deletion_node, op->GetScope(), op->GetPlace(), var_names,
        gcs.at(places[op->GetScopeIdx()]).get(),
S
fix bug  
sneaxiy 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        &(ref_cnts[op->GetScopeIdx()]));

    auto it = std::find_if(
        op->Outputs().begin(), op->Outputs().end(), [](VarHandleBase *var) {
          return dynamic_cast<DummyVarHandle *>(var) != nullptr;
        });

    if (it != op->Outputs().end()) {
      eager_deletion_op->AddInput(*it);
    } else {
      auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
      graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
      op->AddOutput(dep_var);
      eager_deletion_op->AddInput(dep_var);
    }

    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    eager_deletion_op->AddOutput(dummy_leaf);
  }

S
sneaxiy 已提交
242 243
  VLOG(10) << "FLAGS_memory_fraction_of_eager_deletion = "
           << FLAGS_memory_fraction_of_eager_deletion;
S
fix bug  
sneaxiy 已提交
244
  VLOG(10) << "Create " << op_vars_map.size() << " EagerDeletionOpHandle(s)";
S
sneaxiy 已提交
245 246 247 248

  auto while_op_eager_deletion_pass =
      ir::PassRegistry::Instance().Get("while_op_eager_deletion_pass");
  return while_op_eager_deletion_pass->Apply(std::move(graph));
S
sneaxiy 已提交
249 250 251 252 253 254 255 256
}

}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(eager_deletion_pass,
              paddle::framework::details::EagerDeletionPass)
S
sneaxiy 已提交
257
    .RequirePassAttr(paddle::framework::details::kRuntimeReferenceCount)
S
sneaxiy 已提交
258
    .RequirePassAttr(paddle::framework::details::kLastLiveOpsOfVars)
S
sneaxiy 已提交
259
    .RequirePassAttr(paddle::framework::details::kAllPlaces)
S
sneaxiy 已提交
260
    .RequirePassAttr(paddle::framework::details::kGarbageCollector);
S
sneaxiy 已提交
261 262

USE_PASS(while_op_eager_deletion_pass);