while_op_helper.cc 8.3 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/controlflow/while_op_helper.h"
16

S
sneaxiy 已提交
17
#include <string>
S
sneaxiy 已提交
18 19
#include <unordered_set>
#include <utility>
20
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/framework/program_desc.h"
22
#include "paddle/fluid/operators/controlflow/op_variant.h"
23
#include "paddle/fluid/platform/device_context.h"
24
#include "paddle/fluid/string/string_helper.h"
S
sneaxiy 已提交
25 26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

// Set skip variables of while_op and while_grad_op
// These variables should be skipped when eager deletion enables.
// It is because:
//  1. while_grad_op needs some variables defined in while_op.
//  2. while_grad_op needs variables from the previous time step.
static void SetSkipVars(const OpVariant &op, std::vector<std::string> attr) {
  auto &attrs = const_cast<framework::AttributeMap &>(op.Attrs());
  VLOG(2) << "Prepare to skip " << attr.size()
37
          << " var(s): " << string::join_strings(attr, ' ');
S
sneaxiy 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  attrs[kSkipEagerDeletionVars] = std::move(attr);
}

// Check whether the forward while_op and while_grad_op match
// The program may have many while_ops.
static bool IsMatchedWhileOpAndWhileGradOp(const OpVariant &fwd_op,
                                           const OpVariant &grad_op) {
  return fwd_op.Inputs().at(kX) == grad_op.Inputs().at(kX) &&
         fwd_op.Outputs().at(kOutputs) == grad_op.Inputs().at(kOutputs);
}

// Test whether the variable is skippable in forward while_op
// The variable is skippable in while_op when the variable used in while_grad
// is not from grad_block.
static bool IsSkippableVar(const std::string &name,
                           framework::BlockDesc *grad_block) {
  return name != framework::kEmptyVarName && !grad_block->HasVar(name);
}

static void ModifyWhileOpAndWhileGradOpAttr(const OpVariant &fwd_op,
                                            const OpVariant &bwd_op) {
  auto *grad_block = bwd_op.Attr<framework::BlockDesc *>(kStepBlock);

  // Find all skippable variables in forward while_op
  std::unordered_set<std::string> forward_skip_vars;
  for (auto *op_desc : grad_block->AllOps()) {
    for (auto &in_arg_name : op_desc->InputArgumentNames()) {
      if (IsSkippableVar(in_arg_name, grad_block)) {
        forward_skip_vars.insert(in_arg_name);
      }
    }

    for (auto &out_arg_name : op_desc->OutputArgumentNames()) {
      if (IsSkippableVar(out_arg_name, grad_block)) {
        forward_skip_vars.insert(out_arg_name);
      }
    }
  }

  SetSkipVars(fwd_op, std::vector<std::string>(forward_skip_vars.begin(),
                                               forward_skip_vars.end()));

  // Find all skippable variables in while_grad_op
  // The skipped variables are those which would be used across time steps.
  auto &fwd_input = fwd_op.Inputs().at(kX);
  auto &in_grads = bwd_op.Outputs().at(framework::GradVarName(kX));
  PADDLE_ENFORCE_EQ(
      fwd_input.size(), in_grads.size(),
      "Backward input gradient number does not match forward input number.");

  std::unordered_set<std::string> backward_skip_vars;
  for (size_t i = 0; i < in_grads.size(); ++i) {
    if (in_grads[i] == framework::kEmptyVarName) {
      continue;
    }
    backward_skip_vars.insert(in_grads[i]);
    backward_skip_vars.insert(framework::GradVarName(fwd_input[i]));
  }

  SetSkipVars(bwd_op, std::vector<std::string>(backward_skip_vars.begin(),
                                               backward_skip_vars.end()));
}

// Find all while_ops and while_grad_ops in the graph or program
// The while_grad_op and while_op may located in different blocks
// So we should traverse all blocks in the program and find them out.
104 105
static void FindAllWhileAndWhileGradOp(const framework::ProgramDesc &program,
                                       std::vector<OpVariant> *while_ops,
S
sneaxiy 已提交
106 107
                                       std::vector<OpVariant> *while_grad_ops) {
  PADDLE_ENFORCE_GE(while_ops->size(), while_grad_ops->size());
108 109
  for (size_t i = 1; i < program.Size(); ++i) {
    auto &block = program.Block(i);
S
sneaxiy 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    for (size_t j = 0; j < block.OpSize(); ++j) {
      auto *op = block.Op(j);
      if (op->Type() == "while") {
        while_ops->emplace_back(op);
      } else if (op->Type() == "while_grad") {
        while_grad_ops->emplace_back(op);
      }
    }
  }

  PADDLE_ENFORCE_GE(while_ops->size(), while_grad_ops->size(),
                    "There are extra while_grad ops in the graph or program");
}

static void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(
125 126 127
    const framework::ProgramDesc &program, std::vector<OpVariant> *while_ops,
    std::vector<OpVariant> *while_grad_ops) {
  FindAllWhileAndWhileGradOp(program, while_ops, while_grad_ops);
S
sneaxiy 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

  VLOG(2) << "Found while op num: " << while_ops->size()
          << ", while grad op num: " << while_grad_ops->size();

  if (while_grad_ops->empty()) {
    return;
  }

  std::unordered_set<OpVariant, OpVariant::Hasher> while_op_set(
      while_ops->begin(), while_ops->end());

  for (auto &bwd_op : *while_grad_ops) {
    const OpVariant *matched_fwd_op = nullptr;
    for (auto &fwd_op : while_op_set) {
      if (IsMatchedWhileOpAndWhileGradOp(fwd_op, bwd_op)) {
        PADDLE_ENFORCE(matched_fwd_op == nullptr,
                       "Found multiple matched while ops");
        matched_fwd_op = &fwd_op;
      }
    }
    PADDLE_ENFORCE_NOT_NULL(matched_fwd_op,
                            "Cannot find matched forward while op.");
    ModifyWhileOpAndWhileGradOpAttr(*matched_fwd_op, bwd_op);
    while_op_set.erase(*matched_fwd_op);
  }
}

void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
156
    const framework::ProgramDesc &program, int block_id,
S
sneaxiy 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    const std::vector<std::unique_ptr<framework::OperatorBase>> &all_ops) {
  // If block_id is not 0, returns
  // This is because all while_ops and while_grad_ops in the whole program
  // would be processed when block_id is 0 (i.e. when Executor::Run() or
  // ParallelExecutor constructs).

  // What's more, all while_ops and while_grad_ops must be processed when
  // block_id is zero. If not, while_op may run first and erase variables
  // used in while_grad_op, and in this moment, while_grad_ops may be not
  // constructed yet.
  if (block_id != 0) return;

  std::vector<OpVariant> fwd_ops, bwd_ops;
  for (auto &op : all_ops) {
    if (op->Type() == "while") {
      fwd_ops.emplace_back(op.get());
    } else if (op->Type() == "while_grad") {
      bwd_ops.emplace_back(op.get());
    }
  }
177 178
  PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(program, &fwd_ops,
                                                      &bwd_ops);
S
sneaxiy 已提交
179 180 181
}

void PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
182
    const framework::ProgramDesc &program,
S
sneaxiy 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
    const std::vector<framework::OperatorBase *> &while_ops,
    const std::vector<framework::OperatorBase *> &while_grad_ops) {
  std::vector<OpVariant> fwd_ops, bwd_ops;
  fwd_ops.reserve(while_ops.size());
  for (auto *op : while_ops) {
    fwd_ops.emplace_back(op);
  }

  bwd_ops.reserve(while_grad_ops.size());
  for (auto *op : while_grad_ops) {
    bwd_ops.emplace_back(op);
  }

196 197
  PrepareSafeEagerDeletionOnWhileOpAndWhileGradOpImpl(program, &fwd_ops,
                                                      &bwd_ops);
S
sneaxiy 已提交
198 199
}

200 201 202 203 204 205 206 207 208 209 210
// Make while_op could run on GPU place
bool GetCondData(const framework::LoDTensor &cond) {
  if (platform::is_cpu_place(cond.place())) {
    return cond.data<bool>()[0];
  }
  // when platform::is_gpu_place(cond.place()) is true
  std::unique_ptr<framework::LoDTensor> cpu_cond{new framework::LoDTensor()};
#ifdef PADDLE_WITH_CUDA
  framework::TensorCopySync(cond, platform::CPUPlace(), cpu_cond.get());
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
G
guofei 已提交
211
      "This version of PaddlePaddle does NOT support GPU but got GPU tensor "
212 213 214 215 216
      "Cond in WhileOp. Please compile WITH_GPU option"));
#endif
  return cpu_cond->data<bool>()[0];
}

S
sneaxiy 已提交
217 218
}  // namespace operators
}  // namespace paddle