multiary.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/multiary.h"
16

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      2UL,
      errors::InvalidArgument("The input(X) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      y_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Y) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      weight_dims.size(),
      3UL,
      errors::InvalidArgument(
          "Expected the input(Weight) is a 3D tensor. But received %dD tensor.",
          weight_dims.size()));
  if (config.is_runtime || (x_dims[0] > 0 && y_dims[0] > 0)) {
    PADDLE_ENFORCE_EQ(x_dims[0],
                      y_dims[0],
                      errors::InvalidArgument(
                          "The first dimension(batch_size) of input(X) must be "
                          "equal to the first dimension of the input(Y)."));
  }
  PADDLE_ENFORCE_EQ(x_dims[1],
                    weight_dims[1],
                    errors::InvalidArgument(
                        "The second dimension of input(X) must be equal to "
                        "the second dimension of the input(Weight)."));
  PADDLE_ENFORCE_EQ(y_dims[1],
                    weight_dims[2],
                    errors::InvalidArgument(
                        "The second dimension of input(Y) must be equal to "
                        "the third dimension of the input(Weight)."));

  if (bias.get_ptr()) {
    auto bias_dims = bias->dims();
    PADDLE_ENFORCE_EQ(bias_dims.size(),
                      2UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      1UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[1],
                      weight_dims[0],
                      errors::InvalidArgument(
                          "The second dimension of input(Bias) must be equal "
                          "to the first dimension of the input(Weight)."));
  }

  out->set_dims({x_dims[0], weight_dims[0]});
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

87
void ConcatInferMeta(const std::vector<MetaTensor*>& x,
88 89 90 91 92
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config) {
  PADDLE_ENFORCE_GE(x.size(),
                    0UL,
93
                    phi::errors::InvalidArgument(
94 95
                        "The size of input meta vector should be greater"
                        "than 0."));
96 97 98 99 100 101 102 103 104
  if (axis_scalar.FromTensor()) {
    auto out_dims =
        phi::make_ddim(std::vector<int>(x.at(0)->dims().size(), -1));
    out->set_dims(out_dims);
    out->set_dtype(x.at(0)->dtype());
    out->set_layout(x.at(0)->layout());
    out->share_lod(*x.at(0));
    return;
  }
105 106 107

  int axis = axis_scalar.to<int>();
  // 1. calculate axis
108
  int rank = x.at(0)->dims().size();
109 110 111
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank,
      true,
112
      phi::errors::InvalidArgument(
113 114 115 116 117 118 119 120 121
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
  if (axis < 0) {
    axis = axis + rank;
  }

  // 2. calculate out dims
122
  std::vector<phi::DDim> x_dims;
123 124 125
  x_dims.reserve(x.size());
  for (const auto* x_t : x) {
    x_dims.emplace_back(x_t->dims());
126
  }
127 128
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(config.is_runtime, x_dims, axis);
129

130
  out->set_dims(out_dim);
131 132 133
  out->set_dtype(x.at(0)->dtype());
  out->set_layout(x.at(0)->layout());
  out->share_lod(*x.at(0));
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out) {
  auto cond_dims = condition.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      cond_dims,
      x_dims,
      phi::errors::InvalidArgument(
          "The dims of Inputs(Condition) and Inputs(X) should be same. "
          "But received Condition's shape is [%s], X's shape is [%s]",
          cond_dims,
          x_dims));
  PADDLE_ENFORCE_EQ(x_dims,
                    y_dims,
                    phi::errors::InvalidArgument(
                        "The dims of Inputs(X) and Inputs(Y) should be same. "
                        "But received X's shape is [%s], Y's shape is [%s]",
                        x_dims,
                        y_dims));
  out->share_meta(x);
}

161
}  // namespace phi