elementwise_mul_op.cu 3.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/phi/backends/gpu/gpu_context.h"
17 18

namespace ops = paddle::operators;
W
Wu Yi 已提交
19
namespace plat = paddle::platform;
20

21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
29 30 31 32 33
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
34 35
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
36
    if (x_var->IsType<phi::SelectedRows>()) {
Y
YuanRisheng 已提交
37 38 39 40 41
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
42 43
      paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary,
                                                     T, T>(
Y
YuanRisheng 已提交
44 45 46 47 48 49
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
50

Y
YuanRisheng 已提交
51
      int axis = ctx.Attr<int>("axis");
52 53 54
      auto pt_x = paddle::experimental::MakePhiDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePhiDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePhiDenseTensor(*z_lod);
55 56
      phi::MultiplyRawKernel<T>(static_cast<const phi::GPUContext&>(cuda_ctx),
                                *pt_x.get(), *pt_y.get(), axis, pt_z.get());
Y
YuanRisheng 已提交
57 58 59 60 61 62
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
63 64 65
  }
};

66 67 68
}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
69
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
70 71 72 73
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
74
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
75
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
76
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::bfloat16>,
77 78
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);