test_inference_nlp.cc 8.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28
DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
T
tensor-tang 已提交
29 30
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
T
tensor-tang 已提交
31 32
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
33
inline double GetCurrentMs() {
T
tensor-tang 已提交
34 35 36 37 38
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
39 40 41 42 43 44 45 46
// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

T
tensor-tang 已提交
47 48
// Load the input word index data from file and save into LodTensor.
// Return the size of words.
T
tensor-tang 已提交
49 50
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
T
tensor-tang 已提交
51 52 53 54
  if (filename.empty()) {
    return DummyData(out);
  }

T
tensor-tang 已提交
55
  size_t sz = 0;
T
tensor-tang 已提交
56 57
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
58 59
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
60 61 62
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
63 64 65
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
66
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
67
      // Synced with NLP guys, they will ignore input larger then 1024
T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
79
  }
T
tensor-tang 已提交
80 81 82
  return sz;
}

T
tensor-tang 已提交
83 84
// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

T
tensor-tang 已提交
102
void ThreadRunInfer(
T
tensor-tang 已提交
103
    const int tid, paddle::framework::Scope* scope,
T
tensor-tang 已提交
104
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
T
tensor-tang 已提交
105
  // maybe framework:ProgramDesc is not thread-safe
T
tensor-tang 已提交
106
  auto& sub_scope = scope->NewScope();
T
tensor-tang 已提交
107 108 109 110
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto inference_program =
      paddle::inference::Load(&executor, scope, FLAGS_model_path);
T
tensor-tang 已提交
111

T
tensor-tang 已提交
112 113
  auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
  executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);
T
tensor-tang 已提交
114 115

  const std::vector<std::string>& feed_target_names =
T
tensor-tang 已提交
116
      inference_program->GetFeedTargetNames();
T
tensor-tang 已提交
117
  const std::vector<std::string>& fetch_target_names =
T
tensor-tang 已提交
118
      inference_program->GetFetchTargetNames();
T
tensor-tang 已提交
119 120 121 122 123 124 125 126 127 128

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
T
tensor-tang 已提交
129
  auto start_ms = GetCurrentMs();
T
tensor-tang 已提交
130 131
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
T
tensor-tang 已提交
132 133
    executor.RunPreparedContext(ctx.get(), &sub_scope, &feed_targets,
                                &fetch_targets, false /*create_local_scope*/);
T
tensor-tang 已提交
134
  }
T
tensor-tang 已提交
135
  auto stop_ms = GetCurrentMs();
T
tensor-tang 已提交
136
  scope->DeleteScope(&sub_scope);
T
tensor-tang 已提交
137 138 139 140 141
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

T
tensor-tang 已提交
142
TEST(inference, nlp) {
T
tensor-tang 已提交
143 144
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
T
tensor-tang 已提交
145
  }
T
tensor-tang 已提交
146 147
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
T
tensor-tang 已提交
148
                 << "Note: if you use nlp model, please provide data file.";
T
tensor-tang 已提交
149
  }
T
tensor-tang 已提交
150 151
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;
T
tensor-tang 已提交
152

T
tensor-tang 已提交
153
  std::vector<paddle::framework::LoDTensor> datasets;
T
tensor-tang 已提交
154
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
T
tensor-tang 已提交
155
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
T
tensor-tang 已提交
156 157 158
  LOG(INFO) << "Total number of words: " << num_total_words;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
T
tensor-tang 已提交
159 160
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());
T
tensor-tang 已提交
161

T
tensor-tang 已提交
162
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
163
  // only use 1 thread number per std::thread
T
tensor-tang 已提交
164 165 166 167 168 169
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
170
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
171
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
T
tensor-tang 已提交
172
    SplitData(datasets, &jobs, FLAGS_num_threads);
T
tensor-tang 已提交
173
    std::vector<std::unique_ptr<std::thread>> threads;
174
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
175
    for (int i = 0; i < FLAGS_num_threads; ++i) {
T
tensor-tang 已提交
176
      threads.emplace_back(
T
tensor-tang 已提交
177
          new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
T
tensor-tang 已提交
178 179 180 181
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
182
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
183
  } else {
T
tensor-tang 已提交
184 185 186 187 188 189 190 191
    // 1. Define place, executor, scope
    auto place = paddle::platform::CPUPlace();
    auto executor = paddle::framework::Executor(place);

    // 2. Initialize the inference_program and load parameters
    std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
    inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
                                    /*model combined*/ false);
T
tensor-tang 已提交
192
    // always prepare context
T
tensor-tang 已提交
193 194
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);
T
tensor-tang 已提交
195 196 197
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope.get(), 0);
    }
T
tensor-tang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

T
tensor-tang 已提交
212 213
    // feed data and run
    start_ms = GetCurrentMs();
T
tensor-tang 已提交
214 215
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
T
tensor-tang 已提交
216
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
T
tensor-tang 已提交
217 218
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
219
    stop_ms = GetCurrentMs();
T
tensor-tang 已提交
220 221 222
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
223
  }
T
tensor-tang 已提交
224 225
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
T
tensor-tang 已提交
226
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
T
tensor-tang 已提交
227
}