log_softmax_op.h 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

static inline int CanonicalAxis(const int axis, const int rank) {
  if (axis < 0) {
    return axis + rank;
  }
  return axis;
}

32 33
static inline size_t SizeToAxis(const int axis, const framework::DDim dims) {
  size_t size = 1;
34 35 36 37 38 39
  for (int i = 0; i < axis; i++) {
    size *= dims[i];
  }
  return size;
}

40 41
static inline size_t SizeFromAxis(const int axis, const framework::DDim dims) {
  size_t size = 1;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  for (int i = axis; i < dims.size(); i++) {
    size *= dims[i];
  }
  return size;
}

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
    const T kThreshold = static_cast<T>(-64.);
    return x < kThreshold ? kThreshold : x;
  }
};

template <typename DeviceContext, typename T>
struct LogSoftmaxFunctor {
  void operator()(const DeviceContext& context, const framework::Tensor* X,
                  framework::Tensor* Y, const int axis) {
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    int axis_dim = X->dims()[axis];
    const int n = SizeToAxis(axis, X->dims());
    const int d = SizeFromAxis(axis, X->dims());
    framework::DDim dim_2d{n, d};

    auto logits = EigenMatrix<T>::From(*X, dim_2d);
    auto log_softmax = EigenMatrix<T>::From(*Y, dim_2d);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into log_softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      log_softmax.device(*context.eigen_device()) =
          (logits -
           logits.maximum(along_axis)
               .eval()
               .reshape(batch_by_one)
               .broadcast(one_by_class))
              .unaryExpr(ValueClip<T>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      log_softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .eval()
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<T>());
    }

    log_softmax.device(*context.eigen_device()) =
        log_softmax -
        log_softmax.exp()
            .eval()
            .reshape(batch_axis_remain)
            .sum(along_axis)
            .log()
            .broadcast(one_axis);
  }
};

template <typename DeviceContext, typename T>
class LogSoftmaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Out = context.Output<framework::Tensor>("Out");
    const int rank = X->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);

    // allocate memory on device.
    Out->mutable_data<T>(context.GetPlace());

134 135 136 137
    if (X->numel() != 0) {
      LogSoftmaxFunctor<DeviceContext, T>()(
          context.template device_context<DeviceContext>(), X, Out, axis);
    }
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  }
};

template <typename DeviceContext, typename T>
struct LogSoftmaxGradFunctor {
  void operator()(const DeviceContext& context, const framework::Tensor* Y,
                  const framework::Tensor* dY, framework::Tensor* dX,
                  const int axis) {
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int n = SizeToAxis(axis, Y->dims());
    const int d = SizeFromAxis(axis, Y->dims());
    framework::DDim dim_2d{n, d};

    auto y = EigenMatrix<T>::From(*Y, dim_2d);
    auto dy = EigenMatrix<T>::From(*dY, dim_2d);
    auto dx = EigenMatrix<T>::From(*dX, dim_2d);

    const int axis_dim = Y->dims()[axis];
    const int batch_size = y.dimension(kBatchDim);
    const int num_classes = y.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

    dx.device(*context.eigen_device()) =
        dy -
        (y.exp()) * (dy.reshape(batch_axis_remain)
                         .sum(along_class)
                         .broadcast(one_axis));
  }
};

template <typename DeviceContext, typename T>
class LogSoftmaxGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    const int rank = Out->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);

    // allocate memory on device.
    dX->mutable_data<T>(context.GetPlace());

188 189 190 191 192
    if (Out->numel() != 0) {
      LogSoftmaxGradFunctor<DeviceContext, T>()(
          context.template device_context<DeviceContext>(), Out, dOut, dX,
          axis);
    }
193 194 195 196 197
  }
};

}  // namespace operators
}  // namespace paddle