dequantize_mkldnn_op.cc 5.3 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
19
#include "paddle/fluid/platform/errors.h"
X
xiaoli.liu@intel.com 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
41 42
    auto scale_shift = ctx.Attr<float>("Shift");
    bool with_shift = scale_shift != 0.0f;
X
xiaoli.liu@intel.com 已提交
43
    auto* output = ctx.Output<Tensor>("Output");
44 45 46 47 48 49 50 51 52 53 54 55

    PADDLE_ENFORCE_NE(scale_data, 0.0f,
                      platform::errors::InvalidArgument(
                          "Dequantization scale cannot be 0.0"));
    PADDLE_ENFORCE_GE(scale_shift, 0,
                      platform::errors::Unimplemented(
                          "Dequantization shift must be nonnegative."));
    PADDLE_ENFORCE_LE(
        scale_shift, 255,
        platform::errors::Unimplemented(
            "Dequantization shift must be less than or equal to 255."));

X
xiaoli.liu@intel.com 已提交
56 57 58 59 60 61
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    const T* input_data = input->data<T>();
    float* output_data = output->mutable_data<float>(ctx.GetPlace());
62 63

    float reorder_shift = -scale_shift / scale_data;
X
xiaoli.liu@intel.com 已提交
64

A
Adam 已提交
65 66
    auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
X
xiaoli.liu@intel.com 已提交
67 68
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
69
    MKLDNNMemoryFormat src_fmt = input->format();
70 71 72 73 74
    std::string key = platform::CreateKey(platform::ThreadIDasStr(), src_dt,
                                          src_tz, ctx.OutputName("Output"));
    const std::string key_prim = key + "@r";
    const std::string key_src_mem = key + "@s";
    const std::string key_dst_mem = key + "@d";
75 76 77 78 79 80 81 82 83

    std::shared_ptr<mkldnn::memory> src_memory;
    std::shared_ptr<mkldnn::memory> dst_memory;
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
      mkldnn::primitive_attr attri;
      int mask = 0;
84 85 86 87 88 89 90 91 92
      float reorder_scale = 1. / scale_data;
      attri.set_output_scales(mask, {reorder_scale});

      if (with_shift) {
        mkldnn::post_ops post_operations;
        post_operations.append_sum();
        attri.set_post_ops(post_operations);
        std::fill(output_data, output_data + output->numel(), reorder_shift);
      }
93 94

      auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
A
Adam 已提交
95 96 97 98 99 100 101 102
      src_memory = std::make_shared<mkldnn::memory>(
          src_md, engine, to_void_cast<T>(input_data));

      auto dst_md =
          platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
                                  platform::MKLDNNFormatForSize(
                                      dst_tz.size(), MKLDNNMemoryFormat::nchw));

103
      dst_memory = std::make_shared<mkldnn::memory>(
A
Adam 已提交
104
          dst_md, engine, to_void_cast<float>(output_data));
105 106

      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
A
Adam 已提交
107 108
          new reorder::primitive_desc(*src_memory, *dst_memory, attri));
      reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));
109 110 111 112 113 114 115 116 117 118
      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
      src_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_dst_mem));
119 120
      if (with_shift)
        std::fill(output_data, output_data + output->numel(), reorder_shift);
121 122
      dst_memory->set_data_handle(output->mutable_data<float>(ctx.GetPlace()));
    }
X
xiaoli.liu@intel.com 已提交
123

A
Adam 已提交
124 125 126
    mkldnn::stream astream(engine);
    reorder_p->execute(astream, *src_memory, *dst_memory);
    astream.wait();
X
xiaoli.liu@intel.com 已提交
127

128
    output->set_layout(DataLayout::kMKLDNN);
129
    output->set_format(GetMKLDNNFormat(*dst_memory));
X
xiaoli.liu@intel.com 已提交
130 131 132 133 134 135 136 137 138
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
139 140
                   ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>,
                   ops::DeQuantOpKernel<paddle::platform::bfloat16>);