softmax_mkldnn_op.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16 17
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
30 31
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
32
using mkldnn::stream;
J
Jacek Czaja 已提交
33 34
using platform::to_void_cast;

35
template <typename T>
J
Jacek Czaja 已提交
36 37
class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
 public:
38
  SoftmaxMKLDNNHandler(const std::vector<int>& dims,
39
                       const MKLDNNMemoryFormat fmt,
40
                       const platform::MKLDNNDeviceContext& dev_ctx,
41
                       mkldnn::engine engine, const std::string& base_key)
42 43 44
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        fmt_(fmt) {}
J
Jacek Czaja 已提交
45

46
  SoftmaxMKLDNNHandler(const std::vector<int>& dims,
47 48
                       const MKLDNNMemoryFormat fmt,
                       const MKLDNNMemoryFormat diff_fmt,
49 50
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
J
Jacek Czaja 已提交
51
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
52 53 54
        dims_(dims),
        fmt_(fmt),
        diff_fmt_(diff_fmt) {
J
Jacek Czaja 已提交
55 56
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
57
    // Key_common will allow to access FWD_PD from cache
J
Jacek Czaja 已提交
58 59 60
    key_ += "-BWD";
  }

61 62 63 64 65 66
  // TODO(jczaja): Once fwd_pd_ are moved to MKLDNNHandler then this function
  // should be moved as well eg. SoftmaxMKLDNNHandler -> MKLDNNHandler<softmax_>
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(void* ptr) {
    return this->AcquireMemory(dims_, platform::MKLDNNGetDataType<T>(), fmt_,
                               ptr, "@user_src_mem_p");
  }
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void* ptr) {
    return this->AcquireMemory(dims_, platform::MKLDNNGetDataType<T>(), fmt_,
                               ptr, "@user_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(void* ptr) {
    return this->AcquireMemory(dims_, platform::MKLDNNGetDataType<T>(),
                               diff_fmt_, ptr, "@user_diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(void* ptr) {
    return this->AcquireMemory(dims_, platform::MKLDNNGetDataType<T>(),
                               diff_fmt_, ptr, "@user_diff_src_mem_p");
  }
82

83 84 85 86
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    this->AcquireSoftmaxPrimitiveDescriptor();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
87 88
  }

J
Jacek Czaja 已提交
89 90 91 92 93 94 95 96 97
  std::shared_ptr<mkldnn::softmax_forward> AcquireSoftmax(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@softmax_p";

    auto softmax_p = std::static_pointer_cast<mkldnn::softmax_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_p == nullptr) {
98
      this->AcquireSoftmaxPrimitiveDescriptor();
J
Jacek Czaja 已提交
99
      softmax_p = std::make_shared<mkldnn::softmax_forward>(
100
          *fwd_pd_, *(static_cast<mkldnn::memory*>(src_memory_p.get())),
J
Jacek Czaja 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
          *(static_cast<mkldnn::memory*>(dst_memory_p.get())));
      dev_ctx_.SetBlob(prim_key, softmax_p);
    }

    return softmax_p;
  }

  std::shared_ptr<mkldnn::softmax_backward> AcquireSoftmaxBackward(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@softmax_bwd_p";
    auto softmax_bwd_p = std::static_pointer_cast<mkldnn::softmax_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_bwd_p == nullptr) {
116 117 118 119 120 121 122 123 124 125 126
      auto data_softmax_md =
          mkldnn::memory::desc(dims_, platform::MKLDNNGetDataType<T>(), fmt_);
      auto diff_softmax_md = mkldnn::memory::desc(
          dims_, platform::MKLDNNGetDataType<T>(), diff_fmt_);
      // TODO(jczaja): Add support for other axes
      auto softmax_bwd_desc = softmax_backward::desc(
          diff_softmax_md, data_softmax_md, 1 /* dim: C*/);
      this->AcquireSoftmaxPrimitiveDescriptor();
      auto softmax_bwd_pd = mkldnn::softmax_backward::primitive_desc(
          softmax_bwd_desc, engine_, *fwd_pd_);

J
Jacek Czaja 已提交
127
      softmax_bwd_p = std::make_shared<mkldnn::softmax_backward>(
128
          softmax_bwd_pd, *dst_memory_p, *diff_dst_memory_p,
129
          *diff_src_memory_p);
J
Jacek Czaja 已提交
130 131 132 133 134 135
      dev_ctx_.SetBlob(prim_key, softmax_bwd_p);
    }

    return softmax_bwd_p;
  }

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
 protected:
  void AcquireSoftmaxPrimitiveDescriptor(void) {
    // Softmax PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_softmax_pd = key_common_ + "@softmax_pd";

    fwd_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
        dev_ctx_.GetBlob(key_softmax_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
          dev_ctx_.GetBlob(key_softmax_pd));
      if (fwd_pd_ == nullptr) {
        // TODO(jczaja): Make it working along chosen axis and for
        // forward_training
        // Normalization is made after innermost dimension eg. C out of NC
        auto md =
            mkldnn::memory::desc(dims_, platform::MKLDNNGetDataType<T>(), fmt_);
        auto softmax_desc =
            softmax_forward::desc(prop_kind::forward_scoring, md, 1 /*dim: C*/);
        fwd_pd_.reset(
            new softmax_forward::primitive_desc(softmax_desc, engine_));
        dev_ctx_.SetBlob(key_softmax_pd, fwd_pd_);
      }
    }
  }

J
Jacek Czaja 已提交
166
 private:
167
  std::vector<int> dims_;
168 169
  MKLDNNMemoryFormat fmt_;
  MKLDNNMemoryFormat diff_fmt_;
170
  std::shared_ptr<mkldnn::softmax_forward::primitive_desc> fwd_pd_;
J
Jacek Czaja 已提交
171
};
172 173 174 175 176 177 178 179 180 181 182

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        "The shape of softmax's input and output must be identical.");

    // make sure 'output' holds memory, which will be shared by
    // 'flattened_output' later.
    output->mutable_data<T>(ctx.GetPlace());

    // flatten input and output to 2-D matrixs
    auto dims = input->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_input;
    framework::Tensor flattened_output;
    flattened_input.ShareDataWith(*input).Resize(flattened_dims);
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);

    const T* input_data = flattened_input.data<T>();
    T* output_data = flattened_output.mutable_data<T>(ctx.GetPlace());

202 203
    auto src_tz = paddle::framework::vectorize<int>(flattened_dims);
    auto dst_tz = src_tz;
204 205
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
206
    // Generate keys for storing/retriving primitives for this operator
J
Jacek Czaja 已提交
207
    const std::string key =
A
Adam 已提交
208
        platform::GetHash(softmax_tz, ctx.op().Output("Out"));
J
Jacek Czaja 已提交
209

210 211
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, MKLDNNMemoryFormat::nc, dev_ctx,
                                    mkldnn_engine, key);
212

213
    // Currently only NC data format is supported
J
Jacek Czaja 已提交
214
    auto softmax_src_memory_p =
215
        handler.AcquireSrcMemory(to_void_cast<T>(input_data));
J
Jacek Czaja 已提交
216
    auto softmax_dst_memory_p =
217
        handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
J
Jacek Czaja 已提交
218 219
    auto softmax_p =
        handler.AcquireSoftmax(softmax_dst_memory_p, softmax_src_memory_p);
220 221 222

    std::vector<primitive> pipeline{
        *(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
223
    stream(stream::kind::eager).submit(pipeline).wait();
J
Jacek Czaja 已提交
224 225 226 227

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
      T threshold = exp(-64);
228
      for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
J
Jacek Czaja 已提交
229 230 231 232
        output_data[i] =
            output_data[i] < threshold ? threshold : output_data[i];
      }
    }
233 234 235
  }
};

J
Jacek Czaja 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    // make sure 'dx' holds memory, which will be shared by 'flattened_dx'
    // later.
    dx->template mutable_data<T>(ctx.GetPlace());

    auto dims = dout->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_output;
    framework::Tensor flattened_dout;
    framework::Tensor flattened_dx;
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);
    flattened_dout.ShareDataWith(*dout).Resize(flattened_dims);
    flattened_dx.ShareDataWith(*dx).Resize(flattened_dims);

    const T* dst_data = flattened_output.data<T>();
    const T* diff_dst_ptr = flattened_dout.template data<T>();
    T* diff_src_ptr = flattened_dx.template mutable_data<T>(ctx.GetPlace());

271 272
    auto dst_tz = paddle::framework::vectorize<int>(flattened_dims);
    auto src_tz(dst_tz);
F
fengjiayi 已提交
273

J
Jacek Czaja 已提交
274 275 276 277 278
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
    // Currently only supports NC data format
    // retrieve eltwise primitive desc from device context
    const std::string key =
A
Adam 已提交
279
        platform::GetHash(softmax_tz, ctx.op().Input("Out"));
J
Jacek Czaja 已提交
280 281 282 283 284 285 286 287 288 289 290
    const std::string key_softmax_pd = key + "@softmax_pd";

    auto softmax_pd =
        std::static_pointer_cast<mkldnn::softmax_forward::primitive_desc>(
            dev_ctx.GetBlob(key_softmax_pd));
    PADDLE_ENFORCE(softmax_pd != nullptr,
                   "Fail to find softmax_pd in device context");

    // TODO(jczaja): Add layouts support when there is a need to do so
    // Two dimensional softmax does support NC format
    // Normalization is made after innermost dimension eg. C out of NC
291 292
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, MKLDNNMemoryFormat::nc,
                                    MKLDNNMemoryFormat::nc, dev_ctx,
293 294 295 296 297 298 299
                                    mkldnn_engine, key);

    auto dst_memory_p = handler.AcquireDstMemory(to_void_cast<T>(dst_data));
    auto diff_dst_memory_p =
        handler.AcquireDiffDstMemory(to_void_cast<T>(diff_dst_ptr));
    auto diff_src_memory_p =
        handler.AcquireDiffSrcMemory(to_void_cast<T>(diff_src_ptr));
J
Jacek Czaja 已提交
300 301 302 303 304 305 306 307 308

    // Get primitve from device context
    auto softmax_bwd_p = handler.AcquireSoftmaxBackward(
        dst_memory_p, diff_dst_memory_p, diff_src_memory_p);

    std::vector<primitive> pipeline{*softmax_bwd_p};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};
309 310 311 312 313 314 315
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
316 317
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);