search.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14 15 16
from __future__ import print_function
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
17

C
Chengmo 已提交
18
# TODO: define searching & indexing functions of a tensor
19 20 21 22 23 24 25 26 27 28 29
__all__ = [
    'argmax',
    #            'argmin',
    #            'argsort',
    #            'has_inf',
    #            'has_nan',
    #            'masked_select',
    #            'topk',
    #            'where',
    #            'index_select',
    #            'nonzero',
C
Chengmo 已提交
30 31
    'sort',
    'index_sample'
32 33 34
]

from paddle.common_ops_import import *
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


def argmax(input, axis=None, dtype=None, out=None, keepdims=False, name=None):
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(input). when axis<0, it works the same way
            as axis+R. Default is None, it will use the last dim to select indices of max value.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
                    be int32, int64. The default value is None, and it will
                    return the int64 indices.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result. Defalut is None.
        keepdims(bool, optional): Keep the axis that do the select max.
        name(str, optional): The name of output variable, normally there is no need for user to set this this property. 
            Default value is None, the framework set the name of output variable.  


    Returns:
        Variable: A Tensor with data type int64.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = paddle.argmax(input=x, axis=-1)
                out2 = paddle.argmax(input=x, axis=0)
                out3 = paddle.argmax(input=x, axis=1)
                out4 = paddle.argmax(input=x, axis=2)
                out5 = paddle.argmax(input=x, axis=2, keepdims=True)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out5.numpy())
                #array([[[2],
                #        [3],
                #        [1]],
                #       [[0],
                #        [3],
                #        [1]]])
    """
    helper = LayerHelper("arg_max", **locals())
    var_dtype = None
    attrs = {}
    if dtype is not None:
        check_dtype(dtype, 'create data type', ['int32', 'int64'], 'arg_max')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = VarDesc.VarType.INT64
    if out is None:
        out = helper.create_variable_for_type_inference(var_dtype)
    if axis is None:
        axis = -1
    attrs['keepdims'] = keepdims
    attrs['axis'] = axis
    helper.append_op(
        type='arg_max',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs=attrs)
    out.stop_gradient = True
    return out
125 126 127 128 129 130 131


def sort(input, axis=-1, descending=False, out=None, name=None):
    """
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
C
Chengmo 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    **NOTICE**: The Variable in the output of this OP has gradient. You could\
        set Variable :attr:`stop_gradient`.
    Args:
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        out(Variable, optional): The default value is None. Optional output 
            which can be any created Variable that meets the requirements to
            store the result of operation. if out is None, a new Varibale will
            be create to store the result.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = paddle.sort(input=x, axis=-1)
                out2 = paddle.sort(input=x, axis=0)
                out3 = paddle.sort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
    """
    helper = LayerHelper("sort", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=False)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return out, ids
C
Chengmo 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285


def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            # create x value
            x_shape = (2, 5)
            x_type = "float64"
            x_np = np.random.random(x_shape).astype(x_type)

            # create index value
            index_shape = (2, 3)
            index_type = "int32"
            index_np = np.random.randint(low=0, 
                                         high=x_shape[1],
                                         size=index_shape).astype(index_type)

            x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
            index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
            output = paddle.index_sample(x=x, index=index)

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out