parameter_recv.cc 8.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wanghuancoder 已提交
15
#include <sys/types.h>
16
#include <algorithm>
Q
Qiao Longfei 已提交
17
#include <memory>
Q
Qiao Longfei 已提交
18

W
wanghuancoder 已提交
19 20
#include "glog/logging.h"
#include "paddle/fluid/framework/ddim.h"
Q
Qiao Longfei 已提交
21 22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
W
wanghuancoder 已提交
24
#include "paddle/fluid/operators/distributed/communicator_common.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/operators/distributed/distributed.h"
W
wanghuancoder 已提交
26 27 28 29
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
Q
Qiao Longfei 已提交
30 31 32 33 34

namespace paddle {
namespace operators {
namespace distributed {

W
wanghuancoder 已提交
35 36
class RPCClient;

Q
Qiao Longfei 已提交
37 38 39 40 41 42
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

template <typename T>
T
tangwei12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
void RecvSparseLodTensor(const CommContext &rpc_ctx,
                         const framework::Scope &scope) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
  std::vector<const float *> tensors;
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *local_var = local_scope->Var(recv_var_name);
    VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
    // sparse param in recv_scope is LoDTensor
    rets.push_back(rpc_client->AsyncGetVarNoBarrier(
        rpc_ctx.epmap[i], cpu_ctx, *local_scope.get(), recv_var_name,
        recv_var_name));

    const auto *value = local_var->Get<framework::LoDTensor>().data<float>();
    tensors.push_back(value);
  }

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
  }

  auto *merged_var = scope.FindVar(rpc_ctx.var_name);

  if (merged_var == nullptr || !merged_var->IsInitialized()) {
    PADDLE_THROW(
        platform::errors::InvalidArgument("%s must initialized at first."));
  }
  auto dims1 = merged_var->Get<framework::LoDTensor>().dims()[1];
  int64_t height = 0;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto *splited_var = local_scope->FindVar(rpc_ctx.splited_varnames[i]);
    height += splited_var->Get<framework::LoDTensor>().dims()[0];
  }

  PADDLE_ENFORCE_EQ(merged_var->Get<framework::LoDTensor>().dims()[0], height,
                    "recved var must has same dims with local var");

  auto *merged_t = merged_var->GetMutable<framework::LoDTensor>();
  auto *merged_d = merged_t->mutable_data<float>(cpu_place);

  auto pserver_num = rpc_ctx.splited_varnames.size();
  for (int x = 0; x < height; ++x) {
    auto id = x % pserver_num;
    auto idx = x / pserver_num;
    std::memcpy(merged_d + x * dims1, tensors[id] + idx * dims1,
                sizeof(float) * dims1);
  }
}

template <typename T>
void RecvGeoSparseRecords(const CommContext &rpc_ctx,
                          const framework::Scope &scope) {
104 105 106 107 108 109 110
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

111
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    local_scope->Var(recv_var_name);
    VLOG(4) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i];
    // sparse param in recv_scope is LoDTensor
    rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx,
                                           *local_scope.get(), recv_var_name,
                                           recv_var_name, recv_var_name));
  }

  for (size_t i = 0; i < rets.size(); i++) {
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
  }

  int64_t height = 0;
  int64_t ids_num = 0;
  int64_t width = 0;

  std::vector<int64_t> all_ids;
  auto pserver_num = rpc_ctx.splited_varnames.size();

  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    height += recv_t.height();
    ids_num += recv_t.rows().size();
    width = recv_t.value().dims()[1];

T
tangwei12 已提交
145 146 147 148 149 150 151 152
    if (rpc_ctx.is_distributed) {
      std::copy(recv_t.rows().begin(), recv_t.rows().end(),
                std::back_inserter(all_ids));
    } else {
      std::transform(recv_t.rows().begin(), recv_t.rows().end(),
                     std::back_inserter(all_ids),
                     [&](int64_t id) { return id * pserver_num + i; });
    }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }

  auto *var = scope.FindVar(rpc_ctx.var_name);
  auto *t_ = var->GetMutable<framework::SelectedRows>();
  T *out_data =
      t_->mutable_value()->mutable_data<T>({ids_num, width}, cpu_place);
  t_->set_height(height);
  t_->set_rows(all_ids);

  int64_t cnt = 0;
  for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
    auto &recv_var_name = rpc_ctx.splited_varnames[i];
    auto *recv_var = local_scope->FindVar(recv_var_name);
    auto &recv_t = recv_var->Get<framework::SelectedRows>();

    auto rows = recv_t.rows().size();
    const T *in_data = recv_t.value().data<T>();
    std::copy_n(in_data, rows * width, out_data + cnt);
    cnt += rows * width;
  }
  t_->SyncIndex();
}

template <typename T>
void RecvLodTensor(const CommContext &rpc_ctx, const framework::Scope &scope) {
Q
Qiao Longfei 已提交
178
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
179 180
  auto cpu_place = platform::CPUPlace();
  auto &cpu_ctx = *pool.Get(cpu_place);
Q
Qiao Longfei 已提交
181 182

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
183
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
184

185 186 187 188 189 190 191 192 193 194
  std::vector<distributed::VarHandlePtr> rets;

  // variable do not spilt
  if (rpc_ctx.origin_varnames.size() == 1 &&
      rpc_ctx.splited_varnames.size() == 1) {
    auto varname = rpc_ctx.origin_varnames[0];
    VLOG(4) << "recv " << varname << " from " << rpc_ctx.epmap[0];
    rets.push_back(rpc_client->AsyncGetVarNoBarrier(rpc_ctx.epmap[0], cpu_ctx,
                                                    scope, varname, varname));

Q
Qiao Longfei 已提交
195
    for (size_t i = 0; i < rets.size(); i++) {
196 197 198
      PADDLE_ENFORCE_NE(
          rets[i]->Wait(), 0U,
          platform::errors::ExecutionTimeout("internal error in RPCClient"));
Q
Qiao Longfei 已提交
199
    }
200 201 202

    VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
    return;
Q
Qiao Longfei 已提交
203
  } else {
204 205 206
    PADDLE_ENFORCE(false, platform::errors::Unimplemented(
                              "ParameterRecv can not recv dense with multi "
                              "parts now, add it soon."));
Q
Qiao Longfei 已提交
207
  }
208
}
Q
Qiao Longfei 已提交
209

210 211
template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
T
tangwei12 已提交
212 213
                                  const framework::Scope &scope,
                                  bool geo_records) {
214 215 216 217 218 219 220
  VLOG(3) << "ParameterRecv in " << rpc_ctx.var_name;

  PADDLE_ENFORCE_GE(rpc_ctx.origin_varnames.size(), 1,
                    platform::errors::InvalidArgument(
                        "origin_varnames.size() >= 1 is permitted"));

  if (rpc_ctx.is_sparse) {
T
tangwei12 已提交
221 222 223 224 225
    if (geo_records) {
      RecvGeoSparseRecords<T>(rpc_ctx, scope);
    } else {
      RecvSparseLodTensor<T>(rpc_ctx, scope);
    }
226 227
  } else {
    RecvLodTensor<T>(rpc_ctx, scope);
Q
Qiao Longfei 已提交
228 229
  }

230 231 232 233 234
  VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name;
}
template <typename T>
void ParameterRecv<T>::operator()(const CommContext &rpc_ctx,
                                  const framework::Scope &scope) {
T
tangwei12 已提交
235
  this->operator()(rpc_ctx, scope, false);
Q
Qiao Longfei 已提交
236 237 238 239 240 241 242
}

template struct ParameterRecv<float>;

};  // namespace distributed
};  // namespace operators
};  // namespace paddle