layer_norm_op.cu 38.4 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19 20 21
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
P
Pei Yang 已提交
22 23
#include <memory>
#include <vector>
F
furnace 已提交
24

P
Pei Yang 已提交
25
#include "paddle/fluid/framework/ddim.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/operators/layer_norm_op.h"
F
furnace 已提交
27
#include "paddle/fluid/platform/float16.h"
28 29 30 31 32 33
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
C
chengduoZH 已提交
34

S
sneaxiy 已提交
35 36 37
namespace paddle {
namespace operators {

F
furnace 已提交
38 39 40 41 42 43 44
using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using LayerNormParamType = typename CudnnDataType<T>::BatchNormParamType;

S
sneaxiy 已提交
45
inline static int GetDesiredBlockDim(int block_dim) {
46 47 48
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
S
sneaxiy 已提交
49
  const int kMaxBlockDim = 512;
50
#endif
S
sneaxiy 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  return block_dim >= kMaxBlockDim
             ? kMaxBlockDim
             : (1 << (static_cast<int>(std::log2f(block_dim))));
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                             \
    log2_block_dim, feature_size, kMaxBlockNum, ...)                           \
  case (1 << (log2_block_dim)): {                                              \
    for (int i = 0; i < std::ceil(feature_size / (1.0 * kMaxBlockNum)); i++) { \
      int col_offset = i * kMaxBlockNum;                                       \
      int block_num = std::min(feature_size - col_offset, kMaxBlockNum);       \
      constexpr auto kBlockDim = (1 << (log2_block_dim));                      \
      __VA_ARGS__;                                                             \
    }                                                                          \
  } break

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(feature_size, kMaxBlockNum, ...) \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(9, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(8, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(7, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(6, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(5, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(4, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(3, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(2, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(1, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__)

104 105 106
static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
static __device__ __forceinline__ double real_sqrt(double x) { return sqrt(x); }

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

L
Leo Chen 已提交
125
template <typename T>
126
__inline__ __device__ T rsqrt_(const T val) {
127
  return static_cast<T>(1) / sqrt(val);
L
Leo Chen 已提交
128 129 130
}

template <>
131
__inline__ __device__ float rsqrt_(const float val) {
L
Leo Chen 已提交
132 133 134
  return rsqrtf(val);
}

135
template <>
136
__inline__ __device__ double rsqrt_(const double val) {
137 138 139 140
  return rsqrt(val);
}

#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
L
Leo Chen 已提交
141
template <>
142
__inline__ __device__ half rsqrt_(const half val) {
L
Leo Chen 已提交
143 144
  return hrsqrt(val);
}
145
#endif
L
Leo Chen 已提交
146

F
furnace 已提交
147 148 149
template <typename T, typename U, int BlockDim>
__global__ void LayerNormForward(const T *x, const U *scale, const U *bias,
                                 T *y, U *mean, U *var, float epsilon,
S
sneaxiy 已提交
150
                                 int feature_size) {
L
Leo Chen 已提交
151
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
S
sneaxiy 已提交
152
  __shared__ typename BlockReduce::TempStorage temp_storage;
L
Leo Chen 已提交
153 154
  __shared__ U mean_share;
  __shared__ U var_share;
S
sneaxiy 已提交
155 156 157 158

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

159
  // Step 1: Reduce to calculate mean and var
L
Leo Chen 已提交
160 161
  U mean_val = 0;
  U var_val = 0;
S
sneaxiy 已提交
162
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
163
    U tmp = static_cast<U>(x[i]);
164
    mean_val += tmp;
S
sneaxiy 已提交
165 166
    var_val += (tmp * tmp);
  }
167
  auto pair = BlockReduce(temp_storage)
L
Leo Chen 已提交
168 169
                  .Reduce(PairForLayerNorm<U>(mean_val, var_val),
                          PairForLayerNormAddFunctor<U>());
170 171
  if (threadIdx.x == 0) {
    auto tmp = pair.first_ / feature_size;
L
Leo Chen 已提交
172 173 174
    mean[blockIdx.x] = mean_share = static_cast<U>(tmp);
    var[blockIdx.x] = var_share =
        static_cast<U>(pair.second_ / feature_size - tmp * tmp);
175
  }
S
sneaxiy 已提交
176
  __syncthreads();
L
Leo Chen 已提交
177 178

  mean_val = mean_share;
179
  U invvar = rsqrt_<U>(var_share + static_cast<U>(epsilon));
S
sneaxiy 已提交
180

181
  // Step 2: Calculate y
S
sneaxiy 已提交
182 183 184 185
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
F
furnace 已提交
186
        y[i] = static_cast<T>(
L
Leo Chen 已提交
187
            scale[j] * (static_cast<U>(x[i]) - mean_val) * invvar + bias[j]);
S
sneaxiy 已提交
188 189 190 191
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
192 193
        y[i] = static_cast<T>(scale[j] * (static_cast<U>(x[i]) - mean_val) *
                              invvar);
S
sneaxiy 已提交
194 195 196 197 198 199
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
200
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar +
F
furnace 已提交
201
                              bias[j]);
S
sneaxiy 已提交
202 203 204 205
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar);
      }
    }
  }
}

template <typename T, typename U, int VPT>
__inline__ __device__ void cuLoadAddStridedInputs(
    const int i1_block, const int thr_load_row_off, const int thr_load_col_off,
    const int i2_off, const int row_stride, U *warp_buf1, U *warp_buf2,
    const T *input, const T *dout, const int i1_end, const int n2,
    const U *__restrict__ mean, const U *__restrict__ var,
    const float epsilon) {
  const int i1 = i1_block + thr_load_row_off;
  if (i1 >= i1_end) return;
  U curr_mean = mean[i1];
222
  U curr_invvar = rsqrt_<U>(var[i1] + epsilon);
L
Leo Chen 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
  for (int k = 0; k < VPT; ++k) {
    const int i2 = i2_off + k;
    const int load_idx = i1 * n2 + i2;
    const int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
    if (i2 < n2) {
      U curr_input = static_cast<U>(input[load_idx]);
      U curr_dout = static_cast<U>(dout[load_idx]);
      warp_buf1[write_idx] += curr_dout;
      warp_buf2[write_idx] +=
          curr_dout * (curr_input - curr_mean) * curr_invvar;
    }
  }
}

template <typename T, typename U, int BDIMX, int BDIMY, int VPTX>
__global__ void LayerNormBackwardPartGradGammaBeta(
    const T *__restrict__ dout, const T *__restrict__ input, const int n1,
    const int n2, const U *__restrict__ mean, const U *__restrict__ var,
    float epsilon, U *part_grad_gamma, U *part_grad_beta) {
  // VPTX -> value per thread.x, BDIMX -> blockDim.x, BDIMY -> blockDim.y, BDIMX
  // -> blockDim.x
  // template for compile time optimizations

  constexpr int row_stride = BDIMX + 1;
  const int thr_load_col_off = (threadIdx.x * VPTX) & (BDIMX - 1);
  const int thr_load_row_off =
      (threadIdx.x * VPTX) / BDIMX + threadIdx.y * BDIMY;
  const int i2_off = blockIdx.x * BDIMX + thr_load_col_off;

  constexpr int shared_cap = (BDIMX * BDIMY > 2 * VPTX * BDIMY * row_stride)
                                 ? BDIMX * BDIMY
                                 : 2 * VPTX * BDIMY * row_stride;
  __shared__ U buf[shared_cap];

  U *warp_buf1 = reinterpret_cast<U *>(buf);
  U *warp_buf2 = warp_buf1 + VPTX * BDIMY * row_stride;

  for (int idx = threadIdx.y * blockDim.x + threadIdx.x;
       idx < 2 * VPTX * BDIMY * row_stride; idx += BDIMX * BDIMY) {
    buf[idx] = U(0);
  }
  __syncthreads();

  for (int i1_block = blockIdx.y * BDIMY * VPTX; i1_block < n1;
       i1_block += VPTX * BDIMY * gridDim.y) {
    cuLoadAddStridedInputs<T, U, VPTX>(
        i1_block, thr_load_row_off, thr_load_col_off, i2_off, row_stride,
        warp_buf1, warp_buf2, input, dout, n1, n2, mean, var, epsilon);
  }
  __syncthreads();

  // inter-warp reductions
  // sum within each warp
  U acc1 = U(0);
  U acc2 = U(0);
  for (int k = 0; k < VPTX; ++k) {
    int row1 = threadIdx.y + k * VPTX;
    int idx1 = row1 * row_stride + threadIdx.x;
    acc1 += warp_buf1[idx1];
    acc2 += warp_buf2[idx1];
  }
  warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
  warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
  __syncthreads();
  // sum all warps
  for (int offset = VPTX >> 1; offset > 1; offset >>= 1) {
    if (threadIdx.y < offset) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + offset;
      int idx1 = row1 * row_stride + threadIdx.x;
      int idx2 = row2 * row_stride + threadIdx.x;
      warp_buf1[idx1] += warp_buf1[idx2];
      warp_buf2[idx1] += warp_buf2[idx2];
    }
    __syncthreads();
  }
  int i2 = blockIdx.x * blockDim.x + threadIdx.x;
  if (threadIdx.y == 0 && i2 < n2) {
    int row1 = threadIdx.y;
    int row2 = threadIdx.y + 1;
    int idx1 = row1 * row_stride + threadIdx.x;
    int idx2 = row2 * row_stride + threadIdx.x;
    part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
    part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
  }
}

template <typename T, typename U, int BDIMX, int BDIMY>
__global__ void LayerNormBackwardSumGradGammaBeta(
    const U *part_grad_gamma, const U *part_grad_beta, const int part_size,
    // const int n1, const int n2, T* grad_gamma, T* grad_beta) {
    const int n1, const int n2, U *grad_gamma, U *grad_beta) {
  // sum partial gradients for gamma and beta
  __shared__ U buf[BDIMX * BDIMY];
  int i2 = blockIdx.x * BDIMX + threadIdx.x;
  if (i2 < n2) {
    // each warp does sequential reductions until reduced part_size is num_warps
    int num_warp_reductions = part_size / BDIMY;
    U sum_gamma = U(0);
    U sum_beta = U(0);
    const U *part_grad_gamma_ptr =
        part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
    const U *part_grad_beta_ptr =
        part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
    for (int warp_offset = 0; warp_offset < num_warp_reductions;
         ++warp_offset) {
      sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
      sum_beta += part_grad_beta_ptr[warp_offset * n2];
    }
    // inter-warp reductions
    constexpr int nbsize3 = BDIMX * BDIMY / 2;
    for (int offset = BDIMY / 2; offset >= 1; offset /= 2) {
      // top half write to shared memory
      if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
        const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
        buf[write_idx] = sum_gamma;
        buf[write_idx + nbsize3] = sum_beta;
      }
      __syncthreads();
      // bottom half sums
      if (threadIdx.y < offset) {
        const int read_idx = threadIdx.y * BDIMX + threadIdx.x;
        sum_gamma += buf[read_idx];
        sum_beta += buf[read_idx + nbsize3];
      }
      __syncthreads();
    }
    // write out fully summed gradients
    if (threadIdx.y == 0) {
      grad_gamma[i2] = sum_gamma;
      grad_beta[i2] = sum_beta;
    }
  }
}

template <typename T, typename U, int BDIMX, int BDIMY>
__global__ void LayerNormBackwardComputeGradInput(
    const T *__restrict__ dout, const T *__restrict__ input, const int n1,
    const int n2,
    // const U* __restrict__ mean, const U* __restrict__ var, const float
    // epsilon, const T* gamma,
    const U *__restrict__ mean, const U *__restrict__ var, const float epsilon,
    const U *gamma, T *grad_input) {
366 367 368
#ifdef __HIPCC__
  for (auto i1 = hipBlockIdx_y; i1 < n1; i1 += hipGridDim_y) {
#else
L
Leo Chen 已提交
369
  for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
370
#endif
L
Leo Chen 已提交
371 372 373
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
374
    const U c_invvar = rsqrt_<U>(var[i1] + epsilon);
L
Leo Chen 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    const T *k_input = input + i1 * n2;
    const T *k_dout = dout + i1 * n2;
    constexpr int numx = BDIMX * BDIMY;
    const int thrx = threadIdx.x + threadIdx.y * BDIMX;
    if (gamma != NULL) {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss * gamma[l + k];
          sum_loss2 += c_loss * gamma[l + k] * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss * gamma[l];
        sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
      }
    } else {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
    for (int mask = BDIMX / 2; mask > 0; mask /= 2) {
414 415 416 417 418 419
#ifdef PADDLE_WITH_HIP
      sum_loss1 += __shfl_xor(sum_loss1, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 += __shfl_xor(sum_loss2, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#else
L
Leo Chen 已提交
420 421 422 423 424 425
      sum_loss1 +=
          __shfl_xor_sync(0xffffffff, sum_loss1, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 +=
          __shfl_xor_sync(0xffffffff, sum_loss2, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
426
#endif
L
Leo Chen 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    }
    // inter-warp reductions
    if (BDIMY > 1) {
      __shared__ U buf[BDIMX * BDIMY];
      for (int offset = BDIMY / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * BDIMX + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T *k_grad_input = grad_input + i1 * n2;
    if (gamma != NULL) {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss * gamma[l];
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
S
sneaxiy 已提交
480 481 482 483 484 485 486
      }
    }
  }
}

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
F
furnace 已提交
487
template <typename T, typename U, int BlockDim, bool HasDx>
S
sneaxiy 已提交
488
__global__ void LayerNormBackwardGradientAll(const T *x, const T *d_y,
F
furnace 已提交
489 490 491
                                             U *d_scale, U *d_bias, T *d_x,
                                             const U *mean, const U *var,
                                             const U *scale, float epsilon,
492 493
                                             int batch_size, int feature_size,
                                             int col_offset) {
F
furnace 已提交
494
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
S
sneaxiy 已提交
495 496
  __shared__ typename BlockReduce::TempStorage temp_storage;

497 498
  int beg_idx = threadIdx.x * feature_size + (blockIdx.x + col_offset);
  int end_idx = batch_size * feature_size + (blockIdx.x + col_offset);
S
sneaxiy 已提交
499
  int stride = BlockDim * feature_size;
500

F
furnace 已提交
501
  U d_scale_partial = static_cast<U>(0), d_bias_partial = static_cast<U>(0);
S
sneaxiy 已提交
502 503 504

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
F
furnace 已提交
505 506 507 508
    auto var_val = real_sqrt(static_cast<U>(var[row_idx]) + epsilon);
    d_scale_partial += static_cast<U>(d_y[i]) *
                       (static_cast<U>(x[i]) - mean[row_idx]) / var_val;
    d_bias_partial += static_cast<U>(d_y[i]);
509
    if (HasDx) {
F
furnace 已提交
510 511
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                              scale[blockIdx.x + col_offset] / var_val);
512
    }
S
sneaxiy 已提交
513 514
  }

515
  auto pair = BlockReduce(temp_storage)
F
furnace 已提交
516 517
                  .Reduce(PairForLayerNorm<U>(d_scale_partial, d_bias_partial),
                          PairForLayerNormAddFunctor<U>());
S
sneaxiy 已提交
518 519

  if (threadIdx.x == 0) {
520 521
    d_scale[blockIdx.x + col_offset] = pair.first_;
    d_bias[blockIdx.x + col_offset] = pair.second_;
S
sneaxiy 已提交
522 523 524 525 526 527
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
F
furnace 已提交
528
template <typename T, typename U, int BlockDim, bool HasDx, bool HasDScale>
S
sneaxiy 已提交
529
__global__ void LayerNormBackwardGradientScaleOrBias(
F
furnace 已提交
530 531
    const T *x, const T *d_y, U *d_scale, U *d_bias, T *d_x, const U *mean,
    const U *var, const U *scale, float epsilon, int batch_size,
532
    int feature_size, int col_offset) {
F
furnace 已提交
533
  using BlockReduce = cub::BlockReduce<U, BlockDim>;
S
sneaxiy 已提交
534
  __shared__ typename BlockReduce::TempStorage temp_storage;
535 536
  int beg_idx = threadIdx.x * feature_size + blockIdx.x + col_offset;
  int end_idx = batch_size * feature_size + blockIdx.x + col_offset;
S
sneaxiy 已提交
537
  int stride = BlockDim * feature_size;
F
furnace 已提交
538
  U d_scale_or_d_bias_partial = static_cast<U>(0);
S
sneaxiy 已提交
539 540 541

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
F
furnace 已提交
542 543
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[row_idx]) + epsilon));
S
sneaxiy 已提交
544
    if (HasDScale) {
F
furnace 已提交
545 546 547
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]) *
                                   (static_cast<U>(x[i]) - mean[row_idx]) /
                                   var_val;
S
sneaxiy 已提交
548
    } else {  // d_bias != nullptr
F
furnace 已提交
549
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]);
S
sneaxiy 已提交
550 551 552
    }

    if (HasDx) {
553
      if (scale != nullptr) {
F
furnace 已提交
554 555
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                                scale[blockIdx.x + col_offset] / var_val);
556
      } else {
F
furnace 已提交
557
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
558
      }
S
sneaxiy 已提交
559 560 561 562 563 564 565 566
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
567
      d_scale[blockIdx.x + col_offset] = d_scale_or_d_bias_partial;
S
sneaxiy 已提交
568
    } else {
569
      d_bias[blockIdx.x + col_offset] = d_scale_or_d_bias_partial;
S
sneaxiy 已提交
570 571 572 573
    }
  }
}

F
furnace 已提交
574
template <typename T, typename U, int BlockDim>
575
__global__ void LayerNormBackwardPostProcessToCalculateDX(const T *x, T *d_x,
F
furnace 已提交
576 577
                                                          const U *mean,
                                                          const U *var,
578 579
                                                          float epsilon,
                                                          int feature_size) {
F
furnace 已提交
580
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
581
  __shared__ typename BlockReduce::TempStorage temp_storage;
F
furnace 已提交
582
  __shared__ U d_x_reduce_tmp[2];
583 584 585 586

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

F
furnace 已提交
587 588 589
  U block_mean = mean[blockIdx.x];
  U block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
590
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
591 592 593
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
594 595 596 597
  }

  auto pair =
      BlockReduce(temp_storage)
F
furnace 已提交
598 599
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());
600 601

  if (threadIdx.x == 0) {
F
furnace 已提交
602 603 604 605
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
606 607 608 609 610 611
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
612 613 614
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
615 616 617
  }
}

S
sneaxiy 已提交
618
// Here, we only calculate d_x
F
furnace 已提交
619
template <typename T, typename U, int BlockDim>
620
__global__ void LayerNormBackwardGradientOnlyDX(const T *x, const T *d_y,
F
furnace 已提交
621 622
                                                T *d_x, const U *mean,
                                                const U *var, const U *scale,
623 624
                                                float epsilon,
                                                int feature_size) {
F
furnace 已提交
625
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
626
  __shared__ typename BlockReduce::TempStorage temp_storage;
F
furnace 已提交
627
  __shared__ U d_x_reduce_tmp[2];
628 629 630 631

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

F
furnace 已提交
632 633
  U block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
634
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
635 636
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(block_var) + epsilon));
S
sneaxiy 已提交
637
    if (scale != nullptr) {
638
      int col_idx = i % feature_size;
F
furnace 已提交
639 640
      d_x[i] =
          static_cast<T>(static_cast<U>(d_y[i]) * scale[col_idx] / var_val);
S
sneaxiy 已提交
641
    } else {
F
furnace 已提交
642
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
S
sneaxiy 已提交
643
    }
F
furnace 已提交
644 645 646
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
647 648 649 650
  }

  auto pair =
      BlockReduce(temp_storage)
F
furnace 已提交
651 652
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());
653 654

  if (threadIdx.x == 0) {
F
furnace 已提交
655 656 657 658
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
659 660 661 662 663 664
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
665 666 667
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
S
sneaxiy 已提交
668 669 670
  }
}

F
furnace 已提交
671
template <typename T, typename U>
S
sneaxiy 已提交
672
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
F
furnace 已提交
673 674
    const T *x, const T *d_y, T *d_x, U *d_scale, U *d_bias, const U *mean,
    const U *var, const U *scale, float epsilon, int feature_size) {
S
sneaxiy 已提交
675 676
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < feature_size) {
F
furnace 已提交
677 678
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[idx]) + epsilon));
S
sneaxiy 已提交
679
    if (d_x != nullptr) {
680
      if (d_scale == nullptr) {
F
furnace 已提交
681
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) / var_val);
682
      } else {
F
furnace 已提交
683 684
        d_x[idx] =
            static_cast<T>(static_cast<U>(d_y[idx]) * scale[idx] / var_val);
685
      }
S
sneaxiy 已提交
686
    }
687 688

    if (d_scale != nullptr) {
F
furnace 已提交
689 690
      d_scale[idx] = static_cast<U>(d_y[idx]) *
                     (static_cast<U>(x[idx]) - mean[idx]) / var_val;
691 692
    }

F
furnace 已提交
693
    if (d_bias != nullptr) d_bias[idx] = static_cast<U>(d_y[idx]);
S
sneaxiy 已提交
694 695 696
  }
}

F
furnace 已提交
697 698 699 700
template <typename T, typename U>
static void LayerNormBackward(const T *x, const T *d_y, const U *scale,
                              const U *mean, const U *var, T *d_x, U *d_scale,
                              U *d_bias, float epsilon, int batch_size,
L
Leo Chen 已提交
701 702 703 704
                              int feature_size,
                              const framework::ExecutionContext &ctx) {
  auto &dev_ctx = ctx.cuda_device_context();
  auto stream = dev_ctx.stream();
705 706 707
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
S
sneaxiy 已提交
708
  const int kMaxBlockDim = 512;
709
#endif
710
  const int kMaxBlockNum = 128;
711 712 713
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
S
sneaxiy 已提交
714 715 716 717
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
    LayerNormBackwardWhenBatchSizeIsOne<
F
furnace 已提交
718 719 720
        T, U><<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim,
                0, stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale,
                             epsilon, feature_size);
721 722 723 724

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
725
                             T, U, kBlockDim><<<1, kBlockDim, 0, stream>>>(
726 727 728
            x, d_x, mean, var, epsilon, feature_size));
      }
    }
S
sneaxiy 已提交
729 730 731 732 733 734 735
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
736 737 738
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
739
                T, U, kBlockDim, false,
740 741 742
                false><<<block_num, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
743 744 745 746
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
747 748 749
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
750 751
                T, U, kBlockDim, false,
                true><<<block_num, kBlockDim, 0, stream>>>(
752 753
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
754 755 756 757
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
758 759
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
S
sneaxiy 已提交
760
            LayerNormBackwardGradientAll<
F
furnace 已提交
761
                T, U, kBlockDim, false><<<block_num, kBlockDim, 0, stream>>>(
S
sneaxiy 已提交
762
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
763
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
764 765 766
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
767 768 769
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientOnlyDX<
F
furnace 已提交
770
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
771 772
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
S
sneaxiy 已提交
773 774 775
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
776 777 778
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
779 780
                T, U, kBlockDim, true,
                false><<<block_num, kBlockDim, 0, stream>>>(
781 782
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
783
      }
784 785 786
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
787
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
788 789
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
790 791 792
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
793 794 795
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
796 797
                T, U, kBlockDim, true,
                true><<<block_num, kBlockDim, 0, stream>>>(
798 799
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
800
      }
801 802 803
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
804
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
805 806
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
807 808
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
L
Leo Chen 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    {
      constexpr int VPT = 4;
      constexpr int BDIMX2 = 32;
      constexpr int BDIMY2 = 4;
      dim3 threads2(BDIMX2, BDIMY2, 1);
      constexpr int part_size = BDIMY2 * VPT;
      const dim3 blocks2((feature_size + BDIMX2 - 1) / BDIMX2, part_size, 1);

      auto part_grad_gamma_ptr =
          memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
      auto part_grad_beta_ptr =
          memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
      U *part_grad_gamma = reinterpret_cast<U *>(part_grad_gamma_ptr->ptr());
      U *part_grad_beta = reinterpret_cast<U *>(part_grad_beta_ptr->ptr());

      LayerNormBackwardPartGradGammaBeta<T, U, BDIMX2, BDIMY2,
                                         VPT><<<blocks2, threads2, 0, stream>>>(
          d_y, x, batch_size, feature_size, mean, var, epsilon, part_grad_gamma,
          part_grad_beta);  // compute part_grad_gamma, beta

      constexpr int BDIMX3 = 32;
      constexpr int BDIMY3 = 8;
      dim3 threads3(BDIMX3, BDIMY3, 1);
      const dim3 blocks3((feature_size + BDIMX2 - 1) / BDIMX2, 1, 1);
      LayerNormBackwardSumGradGammaBeta<
          T, U, BDIMX3, BDIMY3><<<blocks3, threads3, 0, stream>>>(
          part_grad_gamma, part_grad_beta, part_size, batch_size, feature_size,
          d_scale, d_bias);

      constexpr int BDIMX1 = 32;
      constexpr int BDIMY1 = 4;
      dim3 threads1(BDIMX1, BDIMY1, 1);
      const dim3 blocks1(1, batch_size, 1);
      LayerNormBackwardComputeGradInput<
          T, U, BDIMX1, BDIMY1><<<blocks1, threads1, 0, stream>>>(
          d_y, x, batch_size, feature_size, mean, var, epsilon, scale, d_x);
S
sneaxiy 已提交
845
      break;
L
Leo Chen 已提交
846
    }
S
sneaxiy 已提交
847 848 849 850 851
    default:
      break;
  }
}

P
Pei Yang 已提交
852
template <typename T>
853
void LayerNormDirectCUDAFunctor<T>::operator()(gpuStream_t stream,
P
Pei Yang 已提交
854 855 856 857 858 859 860 861 862 863 864
                                               const T *input,
                                               std::vector<int> input_shape,
                                               const T *bias, const T *scale,
                                               T *output, T *mean, T *variance,
                                               int begin_norm_axis, float eps) {
  const auto x_dims = framework::make_ddim(input_shape);
  auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
  int batch_size = static_cast<int>(matrix_dim[0]);
  int feature_size = static_cast<int>(matrix_dim[1]);
  switch (GetDesiredBlockDim(feature_size)) {
    FIXED_BLOCK_DIM_CASE(
F
furnace 已提交
865
        LayerNormForward<T, T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
P
Pei Yang 已提交
866 867 868 869 870 871 872 873 874
            input, scale, bias, output, mean, variance, eps, feature_size));
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Product from begin_norm_axis to end in layer_norm must be larger "
          "than 1"));
      break;
  }
}

S
sneaxiy 已提交
875 876 877 878 879
template <typename T>
class LayerNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
880
    using U = LayerNormParamType<T>;
S
sneaxiy 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto *x = ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto x_dims = x->dims();
    auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
894 895 896 897
    auto *mean_data = mean->mutable_data<U>(ctx.GetPlace());
    auto *var_data = var->mutable_data<U>(ctx.GetPlace());
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<U>());
    auto *bias_data = (bias == nullptr ? nullptr : bias->data<U>());
S
sneaxiy 已提交
898 899 900 901 902 903 904 905 906

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    switch (GetDesiredBlockDim(feature_size)) {
      FIXED_BLOCK_DIM_CASE(
907
          LayerNormForward<T, U,
F
furnace 已提交
908
                           kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
S
sneaxiy 已提交
909 910 911
              x_data, scale_data, bias_data, y_data, mean_data, var_data,
              epsilon, feature_size));
      default:
912 913
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Product from begin_norm_axis to end must be larger than 1"));
S
sneaxiy 已提交
914 915 916 917 918 919 920 921 922 923
        break;
    }
  }
};

template <typename T>
class LayerNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
F
furnace 已提交
924
    using U = LayerNormParamType<T>;
S
sneaxiy 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938
    const float epsilon = ctx.Attr<float>("epsilon");
    // d_x, d_scale, d_bias may be nullptr
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto *x = ctx.Input<Tensor>("X");
    auto *mean = ctx.Input<Tensor>("Mean");
    auto *var = ctx.Input<Tensor>("Variance");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    auto *x_data = x->data<T>();
    auto *d_y_data = d_y->data<T>();
F
furnace 已提交
939 940 941 942
    auto *mean_data = mean->data<U>();
    auto *var_data = var->data<U>();

    auto *scale_data = (scale == nullptr ? nullptr : scale->data<U>());
S
sneaxiy 已提交
943 944
    auto *d_scale_data =
        (d_scale == nullptr ? nullptr
F
furnace 已提交
945
                            : d_scale->mutable_data<U>(ctx.GetPlace()));
S
sneaxiy 已提交
946
    auto *d_bias_data =
F
furnace 已提交
947
        (d_bias == nullptr ? nullptr : d_bias->mutable_data<U>(ctx.GetPlace()));
S
sneaxiy 已提交
948 949 950 951 952 953 954 955 956
    auto *d_x_data =
        (d_x == nullptr ? nullptr : d_x->mutable_data<T>(ctx.GetPlace()));

    const auto &x_dims = x->dims();
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

F
furnace 已提交
957 958
    LayerNormBackward<T, U>(x_data, d_y_data, scale_data, mean_data, var_data,
                            d_x_data, d_scale_data, d_bias_data, epsilon,
L
Leo Chen 已提交
959
                            batch_size, feature_size, ctx);
S
sneaxiy 已提交
960 961
  }
};
F
furnace 已提交
962

P
Pei Yang 已提交
963
template class LayerNormDirectCUDAFunctor<float>;
F
furnace 已提交
964

965 966
#undef FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE
#undef FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE
S
sneaxiy 已提交
967 968 969 970 971
#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
972
namespace ops = paddle::operators;
F
furnace 已提交
973
namespace plat = paddle::platform;
974 975 976 977 978 979 980 981 982 983 984 985
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext,
                             plat::float16>);
#else
C
chengduoZH 已提交
986 987
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
C
chengduoZH 已提交
988
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
F
furnace 已提交
989 990
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, plat::float16>);
C
chengduoZH 已提交
991 992
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
993
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
F
furnace 已提交
994 995 996
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext,
                             plat::float16>);
997
#endif