multi_devices_graph_pass.cc 34.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
40 41 42 43 44
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
102
    var = *var_holder.rbegin();
X
Xin Pan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
130

X
Xin Pan 已提交
131 132 133 134
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";
135
static const char kNumTrainers[] = "num_trainers";
X
Xin Pan 已提交
136

X
Xin Pan 已提交
137
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
138 139 140
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
141 142 143 144
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
145
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
146
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
147
#endif
X
Xin Pan 已提交
148

Y
Yancey1989 已提交
149
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
150 151 152 153 154
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
155 156
}

X
Xin Pan 已提交
157 158
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
159 160
                                                size_t place_id) const {
  auto p = places_[place_id];
X
clean1  
Xin Pan 已提交
161
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
X
Xin Pan 已提交
162 163
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
164

165 166
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
167 168 169
    op_handle->AddInput(var);
  }

170
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
171 172 173 174 175 176 177 178
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
179 180
  }
}
Y
fix pe  
Yancey1989 已提交
181 182

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
183
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
184
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
185 186
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
187 188
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
189 190
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
191
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
192 193 194 195 196 197 198 199 200 201
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
202
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
203
  std::vector<std::string> recv_vars;
204 205
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
206 207 208
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
209 210 211 212 213 214 215 216 217
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
218 219 220 221
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
222
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
239 240 241 242 243
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
244 245 246
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
  std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
X
better  
Xin Pan 已提交
247 248 249 250 251
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
252
      last_backward = i;
X
better  
Xin Pan 已提交
253 254 255
    }
  }

X
Xin Pan 已提交
256 257 258 259
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
X
Xin Pan 已提交
260 261 262
      if (static_cast<bool>(boost::get<int>(ret[i]->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kOptimize))) {
X
Xin Pan 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
281
      }
X
Xin Pan 已提交
282 283 284 285
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
286 287
    }
  }
X
better  
Xin Pan 已提交
288 289 290
  return sorted_ret;
}

X
Xin Pan 已提交
291
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
292
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
293
  Init();
X
Xin Pan 已提交
294
  // Give the topology sort order and rebuild the graph structure.
X
better  
Xin Pan 已提交
295
  std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
X
Xin Pan 已提交
296 297
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
298

299
  int num_trainers = Get<int>(kNumTrainers);
300

301
  for (auto &node : nodes) {
X
Xin Pan 已提交
302
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
303
      all_vars_.emplace(node->Name(), node->Var());
304
    }
C
fix ci  
chengduoZH 已提交
305
  }
C
chengduoZH 已提交
306
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
307 308

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
309 310 311
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
312

Y
fix pe  
Yancey1989 已提交
313
  // find send/recv vars so that we can place the distributed training
314
  // related op in the place 0
X
Xin Pan 已提交
315 316
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
317

C
chengduoZH 已提交
318 319 320
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
321
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
322
  bool is_forwarding = true;
Y
Yancey1989 已提交
323
  bool is_dist_train = false;
324

X
Xin Pan 已提交
325 326
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
327
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
328
    if (boost::get<int>(
329
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
330
        static_cast<int>(OpRole::kRPC)) {
X
Xin Pan 已提交
331
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
332 333 334 335 336 337 338 339 340 341 342 343
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
344 345 346
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
X
Xin Pan 已提交
347
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
348 349 350 351
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
352
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
353
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
354 355
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
356
        // TODO(paddle-dev): Why is there no input for this op_handle?
357
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
358
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
Y
Yu Yang 已提交
359
      }
360 361 362 363
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
364
      is_forwarding = false;
Y
Yu Yang 已提交
365
    } else {
X
Xin Pan 已提交
366
      int op_dev_id = GetOpDeviceID(result, node, sharded_var_device);
C
chengduo 已提交
367
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
368
        CreateComputationalOp(&result, node, op_dev_id);
369
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
370
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
371
        }
C
chengduo 已提交
372 373 374
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
375
        // TODO(paddle-dev): Why is so special about "read" op?
376 377
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
378
          CreateComputationalOps(&result, node, places_.size());
379
          const auto &data_var_names = node->Op()->Output("Out");
380
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
381
        } else {
X
Xin Pan 已提交
382
          CreateComputationalOps(&result, node, places_.size());
383 384
        }

Y
Yancey1989 已提交
385 386
// insert collective ops at the backpropagation; and
// insert collective ops if the graph contains mutilple places.
Y
Yancey1989 已提交
387 388

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
389 390 391
        if (!is_forwarding &&
            (places_.size() > 1 || num_trainers > 1 ||
             (nccl_ctxs_ && nccl_ctxs_->contexts_.size() > 1))) {
Y
Yancey1989 已提交
392 393 394
#else
        if (!is_forwarding && (places_.size() > 1 || num_trainers > 1)) {
#endif
C
chengduo 已提交
395 396
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
397
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
398 399 400
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
401 402
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
403
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
404

C
chengduo 已提交
405
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
406

C
chengduo 已提交
407 408 409
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
M
minqiyang 已提交
410
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
411

C
chengduo 已提交
412 413 414 415
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
416
                    sharded_var_device.emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
417 418 419
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
433
              }
C
chengduo 已提交
434
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
435
            }
Y
Yu Yang 已提交
436 437 438 439 440
          }
        }
      }
    }
  }
441
  bool use_gpu = false;
P
peizhilin 已提交
442
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
443 444 445
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
446 447 448 449 450
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
451 452 453
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
454 455 456 457 458 459 460 461
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
462
      }
C
chengduoZH 已提交
463 464
    }
  }
Y
Yu Yang 已提交
465
  /*
X
Xin Pan 已提交
466 467 468
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
469
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
470

Y
Yu Yang 已提交
471 472 473 474
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
475
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
476
  return graph;
Y
Yu Yang 已提交
477 478
}

Y
Yancey1989 已提交
479 480 481
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
482 483 484
    return true;
  }
  return false;
485 486
}

487 488
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
489
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
490 491 492 493 494 495 496 497 498 499
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
500
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
501
                                                const std::string &p_name,
C
chengduoZH 已提交
502
                                                size_t src_dev_id) const {
P
peizhilin 已提交
503
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
504 505 506
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
507
#else
X
polish  
Xin Pan 已提交
508 509 510
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
511
#endif
X
Xin Pan 已提交
512
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
513

X
Xin Pan 已提交
514
  auto *in =
X
clean1  
Xin Pan 已提交
515
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
516 517 518 519
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
520
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
521
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
522 523 524
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
525 526 527 528 529
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

530 531 532
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
533
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
552
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
568
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
569
                                                    ir::Node *node,
C
chengduoZH 已提交
570
                                                    int dev_id) const {
X
Xin Pan 已提交
571
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
572
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
573
                              local_scopes_[dev_id], places_[dev_id], dev_id));
574
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
575 576
}

X
Xin Pan 已提交
577
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
578
                                                const std::string &og) const {
P
peizhilin 已提交
579
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
580
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
581 582
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
583
#else
X
Xin Pan 已提交
584
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
585 586
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
587
#endif
X
clean1  
Xin Pan 已提交
588
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
589 590 591

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
592
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
593
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
594 595
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
596
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
597

X
Xin Pan 已提交
598
    auto var =
X
polish  
Xin Pan 已提交
599 600
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
601 602 603 604 605
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

606
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
607
    ir::Graph *result, const std::vector<std::string> &datas) const {
P
peizhilin 已提交
608
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
609
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
610 611
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
612
#else
X
Xin Pan 已提交
613
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
614 615
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
616
#endif
X
clean1  
Xin Pan 已提交
617
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
618 619 620 621
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
622
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
623
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
624
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
625 626 627
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
628 629 630 631 632 633
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
634 635 636
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const ir::Graph &graph, ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
637
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
638 639
    return -1;
  }
640
  int op_role = boost::get<int>(
641
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
642 643
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
644
  }
645
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
646
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
647 648

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
649
  int dev_id = GetVarDeviceID(graph, param_grad[1], sharded_var_device);
X
Xin Pan 已提交
650 651
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
652
  return dev_id;
653 654
}

X
Xin Pan 已提交
655 656 657
int MultiDevSSAGraphBuilder::GetVarDeviceID(
    const ir::Graph &graph, const std::string &varname,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
658
  auto got = sharded_var_device.find(varname);
C
chengduo 已提交
659 660 661 662 663 664
  if (got == sharded_var_device.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device.find(varname.substr(0, pos));
    }
  }
X
Xin Pan 已提交
665
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
666 667
}

668
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
669 670
    ir::Graph *result, const std::string &loss_grad_name,
    ir::Node *out_var_node) const {
Y
Yu Yang 已提交
671
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
672 673
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
674
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
675
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
676
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
677
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
678 679 680 681 682 683 684

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

685 686
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
687 688 689
  }
}

X
Xin Pan 已提交
690
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
691
                                                     ir::Node *node,
T
typhoonzero 已提交
692 693
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
694 695
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
696 697
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
698
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
699 700 701
  }
}

X
Xin Pan 已提交
702
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
703 704
                                                   const std::string &og,
                                                   int dst_dev_id) const {
P
peizhilin 已提交
705
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
706
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
707 708
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
709
#else
X
Xin Pan 已提交
710
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
711 712
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
713
#endif
X
clean1  
Xin Pan 已提交
714
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
715 716 717

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
718
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
719
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
720 721
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
722
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
723
  }
X
Xin Pan 已提交
724
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
725 726 727
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
728 729 730 731 732
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
733 734 735
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
736
  int op_dev_id = -1;
737 738 739
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
740
    input_var_names.push_back(input->Name());
741 742
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
743
    output_var_names.push_back(output->Name());
744 745 746
  }

  if (node->Op()->Type() == "split_byref" ||
747 748
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
749
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
750 751
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
752
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
753 754
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
755
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
756 757
      }
    }
758
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
759
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
760
    }
761
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
762 763
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
764
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
765
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
766
    }
Y
Yancey1989 已提交
767
  } else {
768
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
769
    PADDLE_THROW(
Y
Yancey1989 已提交
770 771 772 773 774
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
775 776
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
777

778
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
779
  return op_dev_id;
W
Wu Yi 已提交
780 781 782
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
783
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
784 785 786 787 788 789
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
790
        var = *var_holder.rbegin();
W
Wu Yi 已提交
791 792 793
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
794 795 796
  }
}

797
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
798 799 800
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
801
  int op_dev_id = -1;
802
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
803
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
804 805
    op_dev_id =
        GetVarDeviceID(*result, node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
806 807
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
808 809 810
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
811
        node->inputs[0]->Name().find(".block") == std::string::npos) {
812 813
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
814
        input_var_names.push_back(n->Name());
815
      }
W
Wu Yi 已提交
816 817 818 819
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
820 821
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
822
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
823
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
824
      }
X
Xin Pan 已提交
825
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
826
    }
827 828 829
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
830
      output_var_names.push_back(n->Name());
831
    }
W
Wu Yi 已提交
832 833 834
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
X
Xin Pan 已提交
835 836
      op_dev_id =
          GetVarDeviceID(*result, recv_param_grad[1], *sharded_var_device);
M
minqiyang 已提交
837 838 839
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
840 841 842
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
843
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
844
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
845 846
    }
  } else {
W
Wu Yi 已提交
847
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
848 849 850 851
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
852
                 node->Op()->Type());
X
Xin Pan 已提交
853
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
854 855
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
856

W
Wu Yi 已提交
857 858
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
859
  } else {
W
Wu Yi 已提交
860 861 862
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
863
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
864 865
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
866

W
Wu Yi 已提交
867 868 869 870
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
X
Xin Pan 已提交
871 872
        outvar_dev_id =
            GetVarDeviceID(*result, output->Name(), *sharded_var_device);
Q
Qiao Longfei 已提交
873
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
874 875 876 877 878 879 880 881 882 883 884 885
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
886
  return op_dev_id;
Y
Yu Yang 已提交
887 888
}

889
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
890
  return boost::get<int>(
891
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
892 893 894
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
895
}
Y
Yu Yang 已提交
896 897 898
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
899

X
Xin Pan 已提交
900
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
901 902 903 904
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
905 906
    .RequirePassAttr(paddle::framework::details::kStrategy)
    .RequirePassAttr(paddle::framework::details::kNumTrainers);