softmax_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
Qiao Longfei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/softmax.h"
19
#include "paddle/fluid/operators/transpose_op.h"
20 21 22 23

namespace paddle {
namespace operators {

D
dongzhihong 已提交
24 25
using Tensor = framework::Tensor;

D
dengkaipeng 已提交
26
static inline void CalcTransPermAndShapeByAxis(const Tensor& x, const int axis,
D
dengkaipeng 已提交
27 28
                                               std::vector<int>* perm,
                                               std::vector<int>* shape) {
29 30 31 32 33 34 35 36 37
  auto dim_x = x.dims();
  int rank = dim_x.size();

  if (axis == -1 || axis == rank - 1) {
    return;
  }

  for (int i = 0; i < rank - 1; i++) {
    if (i == axis) {
D
dengkaipeng 已提交
38 39
      perm->push_back(rank - 1);
      shape->push_back(dim_x[rank - 1]);
40
    } else {
D
dengkaipeng 已提交
41 42
      perm->push_back(i);
      shape->push_back(dim_x[i]);
43 44
    }
  }
D
dengkaipeng 已提交
45 46
  perm->push_back(axis);
  shape->push_back(dim_x[axis]);
47 48
}

Q
QI JUN 已提交
49
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
50
class SoftmaxKernel : public framework::OpKernel<T> {
51
 public:
D
dongzhihong 已提交
52
  void Compute(const framework::ExecutionContext& context) const override {
D
dengkaipeng 已提交
53
    auto& dev_ctx = context.template device_context<DeviceContext>();
54
    auto* X = context.Input<Tensor>("X");
F
fengjiayi 已提交
55
    auto* Out = context.Output<Tensor>("Out");
56
    const int axis = context.Attr<int>("axis");
D
dengkaipeng 已提交
57
    int rank = X->dims().size();
Q
qijun 已提交
58

C
caoying03 已提交
59
    // allocate memory on device.
F
fengjiayi 已提交
60
    Out->mutable_data<T>(context.GetPlace());
Q
qijun 已提交
61

D
dengkaipeng 已提交
62 63 64 65
    std::vector<int> perm, shape;
    CalcTransPermAndShapeByAxis(*X, axis, &perm, &shape);

    Tensor X_2d, Out_2d;
66
    Tensor X_trans, Out_trans;
D
dengkaipeng 已提交
67 68
    if (axis != -1 && axis != rank - 1) {
      X_trans.mutable_data<T>(framework::make_ddim(shape), context.GetPlace());
D
dengkaipeng 已提交
69 70
      Out_trans.mutable_data<T>(framework::make_ddim(shape),
                                context.GetPlace());
D
dengkaipeng 已提交
71 72 73 74 75 76 77 78
      TransCompute<DeviceContext, T>(rank, dev_ctx, *X, &X_trans, perm);
      TransCompute<DeviceContext, T>(rank, dev_ctx, *Out, &Out_trans, perm);
      X_2d = framework::ReshapeToMatrix(X_trans, rank - 1);
      Out_2d = framework::ReshapeToMatrix(Out_trans, rank - 1);
    } else {
      X_2d = framework::ReshapeToMatrix(*X, rank - 1);
      Out_2d = framework::ReshapeToMatrix(*Out, rank - 1);
    }
79

80
#ifdef PADDLE_ON_INFERENCE
J
Jacek Czaja 已提交
81
    math::SoftmaxFunctor<DeviceContext, T, true>()(
82
        context.template device_context<DeviceContext>(), &X_2d, &Out_2d);
83 84 85 86
#else
    math::SoftmaxFunctor<DeviceContext, T, false>()(
        context.template device_context<DeviceContext>(), &X_2d, &Out_2d);
#endif
87 88 89 90

    if (axis != -1 && axis != rank - 1) {
      TransCompute<DeviceContext, T>(rank, dev_ctx, Out_trans, Out, perm);
    }
91 92
  }
};
Q
Qiao Longfei 已提交
93

Q
QI JUN 已提交
94
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
95
class SoftmaxGradKernel : public framework::OpKernel<T> {
96
 public:
D
dongzhihong 已提交
97
  void Compute(const framework::ExecutionContext& context) const override {
D
dengkaipeng 已提交
98
    auto& dev_ctx = context.template device_context<DeviceContext>();
F
fengjiayi 已提交
99 100
    auto* Out = context.Input<Tensor>("Out");
    auto* dOut = context.Input<Tensor>(framework::GradVarName("Out"));
101
    auto* dX = context.Output<Tensor>(framework::GradVarName("X"));
D
dengkaipeng 已提交
102 103
    const int axis = context.Attr<int>("axis");
    int rank = Out->dims().size();
Q
Qiao Longfei 已提交
104

105 106
    // allocate memory on device.
    dX->mutable_data<T>(context.GetPlace());
Q
Qiao Longfei 已提交
107

D
dengkaipeng 已提交
108 109 110 111 112 113 114
    std::vector<int> perm, shape;
    CalcTransPermAndShapeByAxis(*dX, axis, &perm, &shape);

    Tensor dX_2d, Out_2d, dOut_2d;
    Tensor dX_trans, Out_trans, dOut_trans;
    if (axis != -1 && axis != rank - 1) {
      dX_trans.mutable_data<T>(framework::make_ddim(shape), context.GetPlace());
D
dengkaipeng 已提交
115 116 117 118
      Out_trans.mutable_data<T>(framework::make_ddim(shape),
                                context.GetPlace());
      dOut_trans.mutable_data<T>(framework::make_ddim(shape),
                                 context.GetPlace());
D
dengkaipeng 已提交
119 120 121 122 123 124 125 126 127 128 129
      TransCompute<DeviceContext, T>(rank, dev_ctx, *dX, &dX_trans, perm);
      TransCompute<DeviceContext, T>(rank, dev_ctx, *Out, &Out_trans, perm);
      TransCompute<DeviceContext, T>(rank, dev_ctx, *dOut, &dOut_trans, perm);
      dX_2d = framework::ReshapeToMatrix(dX_trans, rank - 1);
      Out_2d = framework::ReshapeToMatrix(Out_trans, rank - 1);
      dOut_2d = framework::ReshapeToMatrix(dOut_trans, rank - 1);
    } else {
      dX_2d = framework::ReshapeToMatrix(*dX, rank - 1);
      Out_2d = framework::ReshapeToMatrix(*Out, rank - 1);
      dOut_2d = framework::ReshapeToMatrix(*dOut, rank - 1);
    }
F
fengjiayi 已提交
130

Q
QI JUN 已提交
131
    math::SoftmaxGradFunctor<DeviceContext, T>()(
F
fengjiayi 已提交
132 133
        context.template device_context<DeviceContext>(), &Out_2d, &dOut_2d,
        &dX_2d);
D
dengkaipeng 已提交
134 135 136 137

    if (axis != -1 && axis != rank - 1) {
      TransCompute<DeviceContext, T>(rank, dev_ctx, dX_trans, dX, perm);
    }
Q
Qiao Longfei 已提交
138 139 140
  }
};

141 142
}  // namespace operators
}  // namespace paddle