NeonDepthwiseConv.cpp 4.2 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "NeonDepthwiseConv.h"
H
hedaoyuan 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "paddle/function/ConvOp.h"

namespace paddle {

#if defined(__ARM_NEON__) || defined(__ARM_NEON)

template <DeviceType Device>
class NeonDepthwiseConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);

    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

H
hedaoyuan 已提交
45 46 47 48 49 50 51 52 53 54
    int batchSize = input[0];
    int inputChannels = input[1];
    int inputHeight = input[2];
    int inputWidth = input[3];
    int filterHeight = getFilterHeight(filter);
    int filterWidth = getFilterWidth(filter);
    int outputChannels = output[1];
    int outputHeight = output[2];
    int outputWidth = output[3];
    int filterMultiplier = outputChannels / groups_;
H
hedaoyuan 已提交
55 56
    CHECK_EQ(inputChannels, groups_);

H
hedaoyuan 已提交
57
    // only support strideH() == strideW() and filterHeight == filterWidth.
H
hedaoyuan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
    CHECK_EQ(strideH(), strideW());
    CHECK_EQ(filterHeight, filterWidth);

    float* inputData = inputs[0].data<float>();
    float* filterData = inputs[1].data<float>();
    float* outputData = outputs[0].data<float>();

    // padding the input
    float* inputPadding = inputData;
    if (paddingH() > 0 || paddingW() > 0) {
      int newSize = batchSize * inputChannels * (inputHeight + 2 * paddingH()) *
                    (inputWidth + 2 * paddingW());
      resizeBuffer<Device>(newSize);
      inputPadding = reinterpret_cast<float*>(memory_->getBuf());
72 73 74 75 76 77 78
      neon::Padding<float>::run(inputData,
                                inputPadding,
                                batchSize * inputChannels,
                                inputHeight,
                                inputWidth,
                                paddingH(),
                                paddingW());
H
hedaoyuan 已提交
79 80 81 82 83 84

      // height and width of padding data
      inputHeight += 2 * paddingH();
      inputWidth += 2 * paddingW();
    }

H
hedaoyuan 已提交
85 86 87 88 89
    std::function<void(
        const float*, const float*, int, int, int, int, int, int, float*)>
        DepthWiseConv;

    if (filterWidth == 3 && strideW() == 1) {
H
hedaoyuan 已提交
90
      DepthWiseConv = neon::DepthwiseConvKernel<3, 1>::run;
H
hedaoyuan 已提交
91
    } else if (filterWidth == 3 && strideW() == 2) {
H
hedaoyuan 已提交
92
      DepthWiseConv = neon::DepthwiseConvKernel<3, 2>::run;
H
hedaoyuan 已提交
93
    } else if (filterWidth == 4 && strideW() == 1) {
H
hedaoyuan 已提交
94
      DepthWiseConv = neon::DepthwiseConvKernel<4, 1>::run;
H
hedaoyuan 已提交
95
    } else if (filterWidth == 4 && strideW() == 2) {
H
hedaoyuan 已提交
96
      DepthWiseConv = neon::DepthwiseConvKernel<4, 2>::run;
H
hedaoyuan 已提交
97 98 99
    } else {
      LOG(FATAL) << "Not supported";
    }
H
hedaoyuan 已提交
100

H
hedaoyuan 已提交
101
    for (int i = 0; i < batchSize; i++) {
H
hedaoyuan 已提交
102 103 104 105 106 107 108 109 110
      DepthWiseConv(inputPadding,
                    filterData,
                    inputHeight,
                    inputWidth,
                    outputChannels,
                    outputHeight,
                    outputWidth,
                    filterMultiplier,
                    outputData);
H
hedaoyuan 已提交
111 112 113 114 115 116
      inputPadding += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
    }
  }
};

H
hedaoyuan 已提交
117
#ifndef PADDLE_TYPE_DOUBLE
H
hedaoyuan 已提交
118
REGISTER_TYPED_FUNC(NeonDepthwiseConv, CPU, NeonDepthwiseConvFunction);
H
hedaoyuan 已提交
119
#endif
H
hedaoyuan 已提交
120 121 122 123

#endif

}  // namespace paddle