basic_engine.cc 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/basic_engine.h"

#include <algorithm>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
26

27 28 29 30 31 32 33
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"

34 35
DECLARE_bool(sort_sum_gradient);

36 37 38
namespace paddle {
namespace imperative {

39
void BasicEngine::Init(VarBase* var, bool retain_graph) {
40
  retain_graph_ = retain_graph;
41
  init_node_ = var->GradVarBase()->GradNode();
42 43 44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(var->GradVarBase()->GraphIsFreed(), false,
                    platform::errors::Unavailable(
                        "%s trying to backward through the same graph a second "
                        "time, but this graph have already been freed. Please "
                        "specify Tensor.backward(retain_graph=True) when "
                        "calling backward at the first time.",
                        var->Name()));

  if (!retain_graph) {
    VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name()
            << " because of retain_graph=False when calling backward";
    var->GradVarBase()->SetGraphIsFreed(true);
    var->GradVarBase()->ClearGradNode();
  }
56 57 58 59 60 61 62 63

  if (init_node_ == nullptr || var->OverridedStopGradient()) {
    VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
               "stop_gradient=True: "
            << var->Name();
    return;
  }

64
  VLOG(3) << "Init first node of backward";
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  PADDLE_ENFORCE_EQ(
      var->HasGradVar(), true,
      platform::errors::NotFound("Grad variable not exist for variable %s",
                                 var->Name()));

  auto& fwd_var = var->Var().Get<framework::LoDTensor>();
  auto* grad_var =
      var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
  VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
          << " as stop_gradient false";
  var->GradVarBase()->InnerSetOverridedStopGradient(false);
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(fwd_var.place());
  grad_var->Resize(fwd_var.dims());
  grad_var->mutable_data(fwd_var.place(), fwd_var.type());
  operators::math::set_constant(*dev_ctx, grad_var, 1.0);
}

void BasicEngine::CheckBackwardInputs(const OpBase& op) {
  for (auto& pair : op.GetInsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (auto& var : pair.second) {
      if (!var) {
        continue;
      }

      auto* inner_var = var->MutableVar();
      framework::Tensor* tensor = nullptr;
      if (!inner_var->IsInitialized() ||
          inner_var->IsType<framework::LoDTensor>()) {
        tensor = inner_var->GetMutable<framework::LoDTensor>();
      }

      if (tensor && !tensor->IsInitialized()) {
        VLOG(6) << "Set ungenerated Grad: " << var->Name() << " as zero";
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place());
        tensor->mutable_data(op.place(), var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
    }
  }
}

111 112 113
void BasicEngine::PrepareGradAccumulators(
    const OpBase& op,
    const std::vector<std::shared_ptr<GradOpNode>>& grad_pending_nodes) {
114 115 116 117 118 119 120 121
  for (const auto& pair : op.GetOutsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (const auto& var : pair.second) {
      if (!var) continue;

122 123 124 125 126 127 128 129
      if (!var->HasGradNode()) {
        auto& accumulator = accumulators_[var.get()];
        if (!accumulator) {
          if (FLAGS_sort_sum_gradient) {
            accumulator.reset(new SortedGradientAccumulator(var.get()));
          } else {
            accumulator.reset(new EagerGradientAccumulator(var.get()));
          }
130 131
        }

132
        accumulator->IncreaseRefCnt();
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "("
                << var.get()
                << ") that don't have grad node  with reference count "
                << accumulator->RefCnt();

        if (var->HasLeafHooks()) {
          VLOG(3) << "Grad variable wrapper (" << var->Name()
                  << ") has leaf grad hooks.";
          PADDLE_ENFORCE_NE(
              var->HasGradNode(), true,
              platform::errors::PermissionDenied(
                  "Only leaf Tensor's gradient can append hook to "
                  "Gradientaccumulator."));
          accumulator->SetPostHooks(var->GetLeafHooks());
        }
      } else {
        // Because Inplace op overwrites the grad_node of the input grad_var. So
        // only the information of grad_pending_node can be used to find the
        // grad_node of grad_var.
        bool find_grad_node_of_var = false;
        for (auto& grad_pending_node : grad_pending_nodes) {
          PADDLE_ENFORCE_NOT_NULL(
              grad_pending_node,
              platform::errors::NotFound("Grad pending node is nullptr."));
          for (auto& grad_pending_op : *grad_pending_node) {
            VLOG(6) << "Determine whether var (" << var->Name()
                    << ") is the input var of grad_pending_op ("
                    << grad_pending_op.Type() << ").";
            grad_pending_op.EnforceHasInOut();
            for (const auto& grad_pending_op_ins_pair :
                 grad_pending_op.GetInsMap()) {
              if (!grad_pending_op_ins_pair.second.IsGrad()) {
                continue;
              }
              for (const auto& pending_in_var :
                   grad_pending_op_ins_pair.second) {
                if (var == pending_in_var) {
                  VLOG(6) << "Var (" << var->Name()
                          << ") is the input var of grad_pending_op ("
                          << grad_pending_op.Type() << ").";
                  find_grad_node_of_var = true;
                  break;
                }
              }
              if (find_grad_node_of_var) {
                break;
              }
            }
          }
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
          if (find_grad_node_of_var) {
            auto& accumulator =
                accumulators_with_grad_node_[grad_pending_node][var.get()];

            if (!accumulator) {
              if (FLAGS_sort_sum_gradient) {
                accumulator.reset(new SortedGradientAccumulator(var.get()));
              } else {
                accumulator.reset(new EagerGradientAccumulator(var.get()));
              }
            }

            accumulator->IncreaseRefCnt();

            VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
                    << "(" << var.get()
                    << ") that has grad node with reference count "
                    << accumulator->RefCnt();
            break;
          }
        }
        PADDLE_ENFORCE_EQ(
            find_grad_node_of_var, true,
            platform::errors::NotFound(
                "No grad node corresponding to grad Tensor (%s) was found.",
                var->Name()));
210
      }
211 212 213 214 215 216 217
    }
  }
}

void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
218 219 220 221 222 223 224 225 226 227
      platform::errors::AlreadyExists("Op deps are not empty before preparing "
                                      "it for backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators are not empty before preparing it for "
                        "backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators with grad_node as the key are not empty "
                        "before preparing it for backward network execution."));
228 229 230 231 232 233 234 235 236 237 238

  std::queue<GradOpNode*> q;
  std::unordered_set<GradOpNode*> visited;

  q.push(init_node_.get());
  visited.insert(init_node_.get());

  while (!q.empty()) {
    auto* cur_node = q.front();
    q.pop();

239 240
    const auto& grad_pending_nodes = cur_node->GradPendingNodes();

241
    for (auto& cur_op : *cur_node) {
Z
Zeng Jinle 已提交
242
      cur_op.EnforceHasInOut();
243
      PrepareGradAccumulators(cur_op, grad_pending_nodes);
244 245 246 247 248
    }

    for (auto& grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
249
          platform::errors::NotFound("Grad pending node is nullptr."));
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

void BasicEngine::Execute() {
  if (init_node_ == nullptr) {
    return;
  }

  PrepareDeps();
  // Start execute Computation graph
  std::queue<std::shared_ptr<GradOpNode>> q;
  q.push(std::move(init_node_));

  size_t op_num = 0;

  while (!q.empty()) {
    auto shared_cur_node = std::move(q.front());
    q.pop();

275 276
    auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap();

277 278 279 280 281 282
    for (auto& cur_op : *shared_cur_node) {
      ++op_num;

      // CheckBackWardInput
      CheckBackwardInputs(cur_op);

283
      // Step 1: Run Backward OP
284 285 286 287
      auto& bwd_ins = cur_op.GetInsMap();
      auto& bwd_outs = cur_op.GetOutsMap();

      NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
288 289 290
      // 1. construct the temp output map, avoid to disrupt graph
      // 2. replace the element in the map by temp var, because a
      // var may be coresponding to several grad var in one op
291 292 293 294 295 296 297 298 299 300
      for (auto& pair : tmp_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }

        for (auto& var : pair.second) {
          if (!var) {
            continue;
          }

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
          std::unordered_map<VariableWrapper*,
                             std::unique_ptr<GradientAccumulator>>::iterator
              iter;
          if (!var->HasGradNode()) {
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with no grad_node.";
            iter = accumulators_.find(var.get());
            PADDLE_ENFORCE_EQ(
                iter != accumulators_.end(), true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          } else {
            bool flag_find_grad = false;
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with grad_node.";
            for (auto& grad_pending_node :
                 shared_cur_node->GradPendingNodes()) {
              const auto& iter_grad_node =
                  accumulators_with_grad_node_.find(grad_pending_node);
              if (iter_grad_node != accumulators_with_grad_node_.end()) {
                iter = iter_grad_node->second.find(var.get());
                if (iter != iter_grad_node->second.end()) {
                  flag_find_grad = true;
                  break;
                }
              }
            }
            PADDLE_ENFORCE_EQ(
                flag_find_grad, true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          }
333

334 335
          // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor,
          // it should be orderly and not reapeated.
336
          if (var->IsLeafGrad()) {
337 338 339 340
            if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(),
                          iter->second.get()) == leaf_accumulators_.end()) {
              leaf_accumulators_.push_back(iter->second.get());
            }
341 342 343 344

            if (iter->second->HasInnerVar()) {
              var = iter->second->InnerVar();
            }
345 346
          }

347 348 349
          if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) {
            auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
            tmp_var->SetType(var->Type());
350
            tmp_var->SetForwardDataType(var->ForwardDataType());
351 352 353 354
            var = tmp_var;
            need_accu_var_list_.emplace_back(iter->second.get(), var);
            VLOG(10) << "create temporary var of " << var->Name()
                     << " for sum gradient within this graph!";
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
          } else if (!inplace_grad_name_map.empty() &&
                     inplace_grad_name_map.count(pair.first)) {
            // When calculate Inplace grad op, create a new output var.
            // If a tmp var has been created, there is no need to create it
            // again.
            for (auto& in_var :
                 bwd_ins.at(inplace_grad_name_map.at(pair.first))) {
              if (in_var == var) {
                auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
                tmp_var->SetType(var->Type());
                tmp_var->SetForwardDataType(var->ForwardDataType());
                inplace_output_grad_var_list_.emplace_back(var, tmp_var);
                var = tmp_var;
                VLOG(10) << "Inplace grad op does not use the Inplace "
                            "strategy, a temporary output var ("
                         << var->Name() << ") will be created.";
                break;
              }
            }
374
          }
375 376 377
        }
      }

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
      VLOG(4) << "Check whether there is any inplace operation affecting "
                 "gradient calculation.";
      for (auto& pair : bwd_ins) {
        for (auto& var_wrapper : pair.second) {
          auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot();
          auto tensor_version =
              var_wrapper->MutableVar()->CurrentInplaceVersion();
          PADDLE_ENFORCE_EQ(
              tensor_version, wrapper_version_snapshot,
              platform::errors::PermissionDenied(
                  "Tensor '%s' used in gradient computation in grad op '%s' "
                  "has been "
                  "modified by an inplace operation. "
                  "Its version is %s but the expected version is %s. "
                  "Please fix your code to void calling an inplace operator "
                  "after using the Tensor which will used in gradient "
                  "computation.",
                  var_wrapper->Name(), cur_op.Type(), tensor_version,
                  wrapper_version_snapshot));

          VLOG(6) << " The version of Tensor '" << var_wrapper->Name()
                  << "' is [ " << wrapper_version_snapshot << " ]";
        }
      }

403 404 405 406 407 408
      {
        VLOG(3) << "Start to execute grad op " << cur_op.Type();
        OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(),
                    cur_op.place());
      }

409 410 411 412
      for (auto& pair : inplace_output_grad_var_list_) {
        *pair.first = std::move(*pair.second);
      }

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
      // Step 2: Sum Gradient of This graph
      for (auto& pair : need_accu_var_list_) {
        pair.first->SumGrad(std::move(pair.second), cur_op.id());
      }

      // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks
      for (auto* accumulator : leaf_accumulators_) {
        if (!accumulator->SumGradCompleted()) {
          continue;
        }
        // 1. Call Hooks for **inner_var_**

        // 2. Sum Gradient with Previous Graph
        accumulator->AccumulateGrad();

        // 3. Call backward Hooks for **var_**
429 430 431 432 433
        if (accumulator->HasPostHooks()) {
          accumulator->CallBackwardPostHooks();
        }
      }

434
      need_accu_var_list_.clear();
435
      inplace_output_grad_var_list_.clear();
436
      leaf_accumulators_.clear();
437

438
      if (!retain_graph_) {
439
        VLOG(3) << "Remove op after op " << cur_op.Type() << " runs";
440 441
        cur_op.ClearBackwardTrace();
      }
442 443 444 445
    }

    // Step 3: Collect ready ops
    for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) {
446 447 448
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node is nullptr."));
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }

      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }
  Clear();

  VLOG(1) << "Backward op number: " << op_num;
}

void BasicEngine::Clear() {
  init_node_.reset();
  node_deps_.clear();
  accumulators_.clear();
468
  accumulators_with_grad_node_.clear();
469
  need_accu_var_list_.clear();
470
  leaf_accumulators_.clear();
471 472 473 474
}

}  // namespace imperative
}  // namespace paddle