tensor.h 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <functional>
#include <memory>
#include <utility>
20
#include <vector>
21

22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
using gpuStream_t = cudaStream_t;
#endif
26

27 28 29 30 31
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
using gpuStream_t = hipStream_t;
#endif

32 33 34 35 36 37 38 39
#include "paddle/phi/api/ext/dll_decl.h"
#include "paddle/phi/api/ext/place.h"
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"

namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

43
namespace phi {
44
class TensorBase;
45
class DDim;
46
}  // namespace phi
47 48

namespace paddle {
49

50 51
namespace experimental {

52
class CompatiblePTenTensorUtils;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

class AbstractAutogradMeta {
 public:
  // No AbstractAutogradMeta should be created
  virtual ~AbstractAutogradMeta() {}
};

/**
 * Tensor is the API description of the basic data structure in the
 * [ "Paddle Tensor Operation (pten)" Library ].
 *
 * It is not limited to a simple n-dimensional array.
 * It contains a smart pointer to `TensorImpl`. The data description contained
 * in Tensor is defined by TensorImpl. Tensor only defines the interface for
 * computation.
 *
 * This is a new Tensor design, which is independent of the original
 * framework::Tensor in fluid. The original Tensor will be gradually discarded
 * in the future.
 *
 * Note: Tensor can be NULL state, Tensor is meaningful only when the
 * TensorImpl to which it is pointed is not empty.
 *
 * Note: For the consistency of C++ API self, and the consistency between C++
 * API and Python API, all member methods of Tensor are named with lowercase
 * letters and underscores.
 *
 * Note: Tensor cannot be inherited. The heterogeneous Tensor implementation
 * can be achieved by inheriting the underlying TensorBase.
 *
 * Note: This Tensor API is suitable for training and custom operators,
 * another simple Tensor design may be required for inference.
 */

87
class PADDLE_API Tensor final {
88
 public:
89 90
  /* Part 1: Construction and destruction methods */

91 92 93 94 95 96 97 98
  /**
   * @brief Construct a new Tensor object
   */
  Tensor() = default;

  /**
   * @brief Construct a new Tensor object by copy
   */
99
  Tensor(const Tensor&) = default;
100 101 102 103

  /**
   * @brief Construct a new Tensor object by move
   */
104 105 106
  Tensor(Tensor&&) = default;

  /**
107 108 109 110
   * @brief Construct a new Tensor object by a TensorBase pointer
   *
   * @param tensor_impl
   */
111
  explicit Tensor(std::shared_ptr<phi::TensorBase> tensor_impl);
112 113 114 115 116 117

  /**
   * @brief Construct a new Tensor object on the target place.
   * This is a deprecated method and may be removed in the future!
   *
   * @param place
118
   */
119 120 121 122 123 124 125 126 127 128 129
  explicit Tensor(const PlaceType& place);

  /**
   * @brief Construct a new Tensor object on the target place
   * with specified shape.
   * This is a deprecated method and may be removed in the future!
   *
   * @param place
   * @param shape
   */
  Tensor(const PlaceType& place, const std::vector<int64_t>& shape);
130

131 132 133 134 135
  /**
   * @brief Construct a new Tensor object by a TensorBase pointer and name
   *
   * @param tensor_impl
   */
136
  Tensor(std::shared_ptr<phi::TensorBase> tensor_impl, const std::string& name);
137

J
Jiabin Yang 已提交
138
  /**
139
   * @brief Construct a new Tensor object with name
J
Jiabin Yang 已提交
140
   *
141 142 143 144
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   * */
  explicit Tensor(const std::string& name) : name_(name) {}
J
Jiabin Yang 已提交
145

146
  /* Part 2: Dimension, DataType and DataLayout methods */
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  /**
   * @brief Return the number of elements of Tensor.
   *
   * @return int64_t
   */
  int64_t numel() const;

  /**
   * @brief Get the size of current tensor.
   * The compatible method of `Tensor::numel()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return int64_t
   */
  int64_t size() const;

164
  /**
165 166
   * @brief Return the dimensions of Tensor.
   *
167
   * @return phi::DDim
168
   */
169
  phi::DDim dims() const;
170 171

  /**
172 173 174 175 176 177 178 179 180 181
   * @brief Return the shape (dimensions) of Tensor.
   * The compatible method of `Tensor::dims()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return std::vector<int64_t>
   */
  std::vector<int64_t> shape() const;

  /**
   * @brief Reset the shape of the tensor.
182
   * @note: This method means Reset the shape of the tensor,
183 184 185
   * and must be called before calling mutable_data() or
   * copy_to(const PlaceType& place), this is not a standard definition of
   * reshape behavior, so we will deprecated this feature in the future.
186 187 188 189 190 191 192 193 194
   *
   * @param shape
   */
  void reshape(const std::vector<int64_t>& shape);

  /**
   * @brief Return the data type of Tensor.
   *
   * @return DataType
195
   */
196
  DataType dtype() const;
197 198

  /**
199 200 201 202 203
   * @brief Return the data type of Tensor.
   * The compatible method of `Tensor::dtype()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return DataType
204
   */
205
  DataType type() const;
206 207

  /**
208 209 210
   * @brief Return the layout of Tensor.
   *
   * @return DataLayout
211
   */
212
  DataLayout layout() const;
213

C
Chen Weihang 已提交
214 215 216 217 218 219 220 221
  /**
   * @brief Determine whether tensor is DenseTensor
   *
   * @return true
   * @return false
   */
  bool is_dense_tensor() const;

222 223 224 225 226 227 228 229
  /**
   * @brief Determine whether tensor is SelectedRows
   *
   * @return true
   * @return false
   */
  bool is_selected_rows() const;

230
  /* Part 3: Device and Backend methods */
231

232
  /**
233 234 235 236
   * @brief Return the place (device) of Tensor.
   * This is a deprecated method and may be removed in the future!
   *
   * @return PlaceType
237
   */
238
  PlaceType place() const;
239 240

  /**
241 242 243 244 245
   * @brief Return the place (device) of Tensor.
   * Because the `place` method already exists, so we need to use a new name,
   * here we temporarily use `inner_place`.
   *
   * @return paddle::platform::Place
246
   */
247
  phi::Place inner_place() const;
248 249

  /**
250 251 252 253
   * @brief Determine whether the tensor device is CPU
   *
   * @return true
   * @return false
254
   */
255 256 257 258 259 260 261 262 263
  bool is_cpu() const;

  /**
   * @brief Determine whether the tensor device is CUDA
   *
   * @return true
   * @return false
   */
  bool is_cuda() const;
264 265

  /* Part 4: Data Access methods */
266 267 268 269 270 271 272 273 274 275 276

  /**
   * @brief Get the memory pointer in CPU or GPU with specific data type.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* mutable_data();

277
  /**
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
   * @brief Get the memory pointer in CPU or GPU with specific data type.
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @param place
   * @return T*
   */
  template <typename T>
  T* mutable_data(const PlaceType& place);

  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  const T* data() const;

  /**
   * @brief Get the memory pointer directly.
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* data();

  /**
   * @brief Return a sub-tensor of the given tensor.
   * It is usually used to extract a sub-tensor (which supports
   * modifying the data of the original tensor) to perform further
   * operations.
   *
   * @param begin_idx The index of the start row (inclusive) to slice.
   *                  The index number begins from 0.
   * @param end_idx The index of the end row (exclusive) to slice.
   *                 The index number begins from begin_idx + 1.
   * @return Tensor
   */
322
  Tensor slice(int64_t begin_idx, int64_t end_idx) const;
323 324 325 326

  /**
   * @brief Return the implemention of current Tensor.
   *
327
   * @return std::shared_ptr<phi::TensorBase>
328
   */
329
  std::shared_ptr<phi::TensorBase> impl() const;
330 331 332 333 334 335

  /**
   * @brief Set the implemention of current Tensor.
   *
   * @param impl
   */
336
  void set_impl(const std::shared_ptr<phi::TensorBase>& impl);
337 338 339 340 341 342 343 344 345 346 347

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  /**
   * @brief Get the stream where the tensor is currently located
   * This is a deprecated method and may be removed in the future!
   *
   * @return gpuStream_t
   */
  gpuStream_t stream() const;
#endif

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
  /**
   * @brief Return the name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @return const std::string&
   */
  const std::string& name() const { return name_; }

  /**
   * @brief Set name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @param const std::string& name
   */
  void set_name(const std::string& name) { name_ = name; }

366
  /* Part 5: Data Transform methods */
367 368 369
  /* Alert!!!!: All copy method can only deep copy impl, autograd info only be
   * copied */
  /* out of pten */
370 371
  /**
   * @brief Copy the current Tensor data to the specified device
372
   * and return the new Tensor. It's usually used to set the input tensor data.
373 374 375 376
   * @note The Tensor's `copy_to` method is deprecated since version 2.3, and
   * will be removed in version 2.4, please use `copy_to` method without
   * template argument instead.
   * reason: copying a Tensor to another device does not need to specify the
377
   * data type template argument
378 379 380 381
   *
   * @tparam T
   * @param target_place, the target place of which the tensor will copy to.
   * @return Tensor
382
   */
383 384
  template <typename T>
  Tensor copy_to(const PlaceType& target_place) const;
385 386

  /**
387 388
   * @brief Transfer the current Tensor to the specified device and return.
   *
389 390
   * @param backend, The target backend of which the tensor will copy to.
   * @param blocking, Should we copy this in sync way.
391 392
   * @return Tensor
   */
393
  Tensor copy_to(Backend backend, bool blocking) const;
394 395

  /**
396 397 398 399 400 401 402 403
   * @brief Transfer the source Tensor to current Tensor.
   *
   * @param src, the source Tensor to be copied.
   * @param blocking, Should we copy this in sync way.
   * @return void
   */
  void copy_(const Tensor& src, const bool blocking);
  /**
404 405 406 407
   * @brief Cast datatype from one to another
   *
   * @param target_type
   * @return Tensor
408
   */
409
  Tensor cast(DataType target_type) const;
410

411
  /* Part 6: Status utils methods */
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  /**
   * @brief Determine whether it is a meaningful Tensor
   *
   * @return true
   * @return false
   */
  bool defined() const;

  /**
   * @brief Determine whether Tensor is initialized.
   *
   * @return true
   * @return false
   */
  bool initialized() const;

  /**
   * @brief Determine whether Tensor is initialized.
   * This is a deprecated method and may be removed in the future!
   *
   * @return true
   * @return false
   */
  bool is_initialized() const;
437 438

  /**
439
   * @brief Reset the Tensor implementation
440
   */
441 442 443
  void reset();

  /* Part 7: Operator overloading */
444 445

  /**
446 447 448 449
   * @brief Assignment operator
   *
   * @param x
   * @return Tensor&
450
   */
451
  Tensor& operator=(const Tensor& x) &;
452 453

  /**
454 455 456 457
   * @brief Move assignment operator
   *
   * @param x
   * @return Tensor&
458
   */
459
  Tensor& operator=(Tensor&& x) &;
460

461
  /* Part 8: Autograd methods */
462

463 464 465 466 467 468
  /**
   * @brief Get the autograd meta object
   *
   * @return AbstractAutogradMeta*
   */
  AbstractAutogradMeta* get_autograd_meta() const;
469

470 471 472 473 474 475
  /**
   * @brief Set the autograd meta object
   *
   * @param autograd_meta
   */
  void set_autograd_meta(std::shared_ptr<AbstractAutogradMeta> autograd_meta);
476

477 478 479 480
  /* Part 9: Auto generated Tensor methods */

 private:
  friend class CompatiblePTenTensorUtils;
481 482 483 484 485 486 487 488 489

 private:
  /**
   * [ Why use abstract TensorImpl interface here? ]
   *
   * We hope that the data structure at the API level of the framework can be
   * unified to Tensor, but Tensor itself is heterogeneous.
   *
   * Tensor can generally be represented by void* and size_t, place.
490
   * This is suitable for most scenarios including CPU, GPU, HIP, CPU, etc.,
491 492 493 494 495 496 497 498 499 500
   * but there are a few cases where this definition cannot be described,
   * such as the Tensor representation in third-party lib such as Metal,
   * OpenCL, etc., as well as some special Tensor implementations, including
   * Tensor containing only one Scalar value, or Tensor representing String,
   * etc.
   *
   * Therefore, we hope to use a unified interface to shield the underlying
   * heterogeneous Tensor implementation, so that the API level can be unified
   * to one `Tensor`.
   */
501
  std::shared_ptr<phi::TensorBase> impl_;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

  /**
   * [ Why need abstract AbstractAutogradMeta here? ]
   *
   * Dynamic graphs need to hold backward information
   *
   * [ Why AutogradMeta not in TensorImpl? ]
   *
   * 1. AutogradMeta is only used in dynamic graph, It is execution-related
   *    information, not Tensor data description-related information.
   * 2. Kernel calculation does not require AutogradMeta.
   */
  std::shared_ptr<AbstractAutogradMeta> autograd_meta_{nullptr};

  /**
517
   * Tensor name: used to adapt original execution mechanism and debug analysis
518
   * in the development of new dygraph. It may be removed in the future.
519
   */
520
  std::string name_{""};
521 522 523 524 525 526

  /**
   * Place type: Return the expected memory location if the Tensor is
   * uninitialized.
   */
  PlaceType place_{PlaceType::kUNK};
527 528 529 530
};

}  // namespace experimental
}  // namespace paddle