qr_op.h 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Dense>
#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
22
#include "paddle/fluid/operators/svd_helper.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;

static inline std::tuple<bool, bool> _parse_qr_mode(std::string mode) {
  bool compute_q;
  bool reduced;
  if (mode == "reduced") {
    compute_q = true;
    reduced = true;
  } else if (mode == "complete") {
    compute_q = true;
    reduced = false;
  } else if (mode == "r") {
    compute_q = false;
    reduced = true;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "QR received unrecognized mode '%s'"
        " but expected one of 'reduced' (default), 'r', or 'complete'",
        mode));
  }
  return std::make_tuple(compute_q, reduced);
}

template <typename T>
class QrCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool compute_q;
    bool reduced_mode;
    const Tensor& x = *context.Input<Tensor>("X");
    Tensor& q = *context.Output<Tensor>("Q");
    Tensor& r = *context.Output<Tensor>("R");
    std::string mode = context.Attr<std::string>("mode");
    std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode);

    auto numel = x.numel();
    PADDLE_ENFORCE_GT(numel, 0, platform::errors::PreconditionNotMet(
                                    "The input of QR is empty."));
    auto x_dims = x.dims();
    int x_rank = x_dims.size();
    int m = x_dims[x_rank - 2];
    int n = x_dims[x_rank - 1];
    int min_mn = std::min(m, n);
    int k = reduced_mode ? min_mn : m;
    int batch_size = numel / (m * n);
    int x_stride = m * n;
    int q_stride = m * k;
    int r_stride = k * n;

    auto* x_data = x.data<math::Real<T>>();
    T* q_data = nullptr;
    if (compute_q) {
      q_data = q.mutable_data<math::Real<T>>(
          context.GetPlace(),
          size_t(batch_size * m * k * sizeof(math::Real<T>)));
83
      memset(q_data, 0, size_t(batch_size * m * k * sizeof(math::Real<T>)));
84 85 86
    }
    auto* r_data = r.mutable_data<math::Real<T>>(
        context.GetPlace(), size_t(batch_size * k * n * sizeof(math::Real<T>)));
87
    memset(r_data, 0, size_t(batch_size * k * n * sizeof(math::Real<T>)));
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    // Implement QR by calling Eigen
    for (int i = 0; i < batch_size; ++i) {
      const T* x_matrix_ptr = x_data + i * x_stride;
      T* r_matrix_ptr = r_data + i * r_stride;
      using EigenDynamicMatrix =
          Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
      auto x_matrix = Eigen::Map<const EigenDynamicMatrix>(x_matrix_ptr, m, n);
      Eigen::HouseholderQR<EigenDynamicMatrix> qr(x_matrix);
      if (reduced_mode) {
        auto qr_top_matrix = qr.matrixQR().block(0, 0, min_mn, n);
        auto r_matrix_view =
            qr_top_matrix.template triangularView<Eigen::Upper>();
        auto r_matrix = EigenDynamicMatrix(r_matrix_view);
        memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T));
      } else {
        auto r_matrix_view =
            qr.matrixQR().template triangularView<Eigen::Upper>();
        auto r_matrix = EigenDynamicMatrix(r_matrix_view);
        memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T));
      }

      if (compute_q) {
        T* q_matrix_ptr = q_data + i * q_stride;
        if (reduced_mode) {
          auto q_matrix =
              qr.householderQ() * EigenDynamicMatrix::Identity(m, min_mn);
          q_matrix.transposeInPlace();
          memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T));
        } else {
          auto q_matrix =
              qr.householderQ() * EigenDynamicMatrix::Identity(m, m);
          q_matrix.transposeInPlace();
          memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T));
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class QrGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    const framework::Tensor& Q = *ctx.Input<framework::Tensor>("Q");
    const framework::Tensor& R = *ctx.Input<framework::Tensor>("R");
    // Use a different name A instead of X
    const framework::Tensor& A = *ctx.Input<framework::Tensor>("X");
    const framework::Tensor& dQ =
        *ctx.Input<framework::Tensor>(framework::GradVarName("Q"));
    const framework::Tensor& dR =
        *ctx.Input<framework::Tensor>(framework::GradVarName("R"));
    // Use a different name dA instead of dX
    framework::Tensor& dA =
        *ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    dA.mutable_data<math::Real<T>>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T>()(dev_ctx, &dA, T(0));

    auto dito = math::DeviceIndependenceTensorOperations<DeviceContext, T>(ctx);

    std::string mode = ctx.Attr<std::string>("mode");
    bool compute_q, reduced;
    std::tie(compute_q, reduced) = _parse_qr_mode(mode);
    if (!compute_q) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The derivative of qr is not implemented when mode='r'."));
    }

    auto a_dims = A.dims();
    int a_rank = a_dims.size();
    int m = a_dims[a_rank - 2];
    int n = a_dims[a_rank - 1];

    if ((m > n) && (!reduced)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The derivative of qr is not implemented when mode='complete' and "
          "nrows > ncols."));
    }

    // m >= n case
    auto m_gt_n_case = [](
        const framework::ExecutionContext& ctx,
        math::DeviceIndependenceTensorOperations<DeviceContext, T>& dito,
        const Tensor& dQ, const Tensor& dR, const Tensor& A, const Tensor& Q,
        const Tensor& R) -> framework::Tensor {
      // Hai-Jun Liao, Jin-Guo Liu, Lei Wang, Tao Xiang (2019). Differentiable
      // Programming Tensor Networks.
      // https://arxiv.org/abs/1903.09650 Section 3. QR factorization

      // dR^H
      framework::Tensor R_term;
      if (ctx.HasInput(framework::GradVarName("R"))) {
        R_term = dito.Matmul(R, dito.Transpose(dR));
      } else {
        R_term = dito.Fill(framework::vectorize<int>(R.dims()), 0);
      }

      // dQ^H * Q
      framework::Tensor Q_term;
      if (ctx.HasInput(framework::GradVarName("Q"))) {
        Q_term = dito.Matmul(dito.Transpose(dQ), Q);
      } else {
        Q_term = dito.Fill(framework::vectorize<int>(R.dims()), 0);
      }

      framework::Tensor M_tmp1 = dito.Sub(R_term, Q_term);

      // Compute M = (tril(M) + tril(M).mH()) * 0.5 Identity
      framework::Tensor M_tril_0 = dito.TrilTriu(M_tmp1, 0, true);
      framework::Tensor M_tril_1 = dito.TrilTriu(M_tmp1, -1, true);
      framework::Tensor M = dito.Add(M_tril_0, dito.Transpose(M_tril_1));

      framework::Tensor rhs_term;
      if (ctx.HasInput(framework::GradVarName("Q"))) {
        rhs_term = dito.Add(dQ, dito.Matmul(Q, M));
      } else {
        rhs_term = dito.Matmul(Q, M);
      }

      // dA * R^H = rhs_term
      auto dA =
          dito.TriangularSolve(dito.Transpose(dito.Conj(dito.Transpose(R))),
                               dito.Transpose(rhs_term),
                               /*upper=*/true,
                               /*transpose=*/false,
                               /*unitriangular=*/false);

      return dito.Transpose(dA);
    };

    if (m >= n) {
      auto dA_tmp = m_gt_n_case(ctx, dito, dQ, dR, A, Q, R);
      framework::TensorCopy(dA_tmp, dA.place(), &dA);
    } else {
      // If m < n for input matrices A, we partition A = [X|Y] and R = [U|V]
      // Calculate dX and dY individually and concatenate them to get dA
      dA.mutable_data<math::Real<T>>(ctx.GetPlace());

      auto Y = dito.Slice(A, {-1}, {m}, {n});
      auto U = dito.Slice(R, {-1}, {0}, {m});
      framework::Tensor dY, dX, dV, dR_tmp, dQ_prime;

      if (ctx.HasInput(framework::GradVarName("R"))) {
        dV = dito.Slice(dR, {-1}, {m}, {n});
        dR_tmp = dito.Slice(dR, {-1}, {0}, {m});
        // Y * dV^H
        dQ_prime = dito.Matmul(Y, dito.Transpose(dV));
      } else {
        dV = dito.Fill(framework::vectorize<int>(Y.dims()), 0);
        dQ_prime = dito.Fill(framework::vectorize<int>(Q.dims()), 0);
      }

      if (ctx.HasInput(framework::GradVarName("Q"))) {
        dQ_prime = dito.Add(dQ_prime, dQ);
      }
      dX = m_gt_n_case(ctx, dito, dQ_prime, dR_tmp, A, Q, U);
      dY = dito.Matmul(Q, dV);
      // Concatenate dX and dY to get dA.
      auto dA_tmp = dito.ConcatTwoTensors(dX, dY, -1);
      framework::TensorCopy(dA_tmp, dA.place(), &dA);
    }
250 251 252
  }
};

253 254 255 256 257 258 259 260
template <typename DeviceContext, typename T>
void BatchedGeqrf(const DeviceContext& dev_ctx, int batch_size, int m, int n,
                  T* a, int lda, T* tau, int a_stride, int tau_stride);

template <typename DeviceContext, typename T>
void BatchedOrgqr(const DeviceContext& dev_ctx, int batch_size, int m, int n,
                  int k, T* a, int lda, T* tau, int a_stride, int tau_stride);

261 262
}  // namespace operators
}  // namespace paddle